Exploiting Information Geometry to Improve the Convergence of Nonparametric Active Contours
This paper presents a fast converging Riemannian steepest descent method for nonparametric statistical active contour models, with application to image segmentation. Unlike other fast algorithms, the proposed method is general and can be applied to any statistical active contour model from the expon...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2015-03, Vol.24 (3), p.836-845 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 845 |
---|---|
container_issue | 3 |
container_start_page | 836 |
container_title | IEEE transactions on image processing |
container_volume | 24 |
creator | Pereyra, Marcelo Batatia, Hadj McLaughlin, Steve |
description | This paper presents a fast converging Riemannian steepest descent method for nonparametric statistical active contour models, with application to image segmentation. Unlike other fast algorithms, the proposed method is general and can be applied to any statistical active contour model from the exponential family, which comprises most of the models considered in the literature. This is achieved by first identifying the intrinsic statistical manifold associated with this class of active contours, and then constructing a steepest descent on that manifold. A key contribution of this paper is to derive a general and tractable closed-form analytic expression for the manifold's Riemannian metric tensor, which allows computing discrete gradient flows efficiently. The proposed methodology is demonstrated empirically and compared with other state of the art approaches on several standard test images, a phantom positron-emission-tomography scan and a B-mode echography of in-vivo human dermis. |
doi_str_mv | 10.1109/TIP.2014.2383318 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2014_2383318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6990574</ieee_id><sourcerecordid>1652431442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-fa45b7463fcf0f6f62c1e4f38e7cd72c2933b7452a721258735bfeca850a634e3</originalsourceid><addsrcrecordid>eNo9kU1vEzEQhi0EoqX0joSEfITDBo8_1rvHKCptpIhyKKceLMcdt0a762A7Ufvv65CQk0eeZ15pniHkE7AZAOu_3y1_zTgDOeOiEwK6N-QcegkNY5K_rTVTutEg-zPyIec_rJIK2vfkjCslOGh9Tu6vnjdDDCVMj3Q5-ZhGW0Kc6DXGEUt6oSXS5bhJcYe0PCFdxGmH6REnhzR6-jNOG5vsHg2Ozl0Ju39MiduUP5J33g4ZL4_vBfn94-pucdOsbq-Xi_mqcaJXpfFWqrWWrfDOM9_6ljtA6UWH2j1o7ngvRO0rbjUHrjot1Nqjs51ithUSxQX5dsh9soPZpDDa9GKiDeZmvjL7PyagZ5x1O6js1wNbV_q7xVzMGLLDYbATxm020CouBUjJK8oOqEsx54T-lA3M7PWbqt_s9Zuj_jry5Zi-XY_4cBr477sCnw9AQMRTu-37eikpXgFYqIiy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652431442</pqid></control><display><type>article</type><title>Exploiting Information Geometry to Improve the Convergence of Nonparametric Active Contours</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Pereyra, Marcelo ; Batatia, Hadj ; McLaughlin, Steve</creator><creatorcontrib>Pereyra, Marcelo ; Batatia, Hadj ; McLaughlin, Steve</creatorcontrib><description>This paper presents a fast converging Riemannian steepest descent method for nonparametric statistical active contour models, with application to image segmentation. Unlike other fast algorithms, the proposed method is general and can be applied to any statistical active contour model from the exponential family, which comprises most of the models considered in the literature. This is achieved by first identifying the intrinsic statistical manifold associated with this class of active contours, and then constructing a steepest descent on that manifold. A key contribution of this paper is to derive a general and tractable closed-form analytic expression for the manifold's Riemannian metric tensor, which allows computing discrete gradient flows efficiently. The proposed methodology is demonstrated empirically and compared with other state of the art approaches on several standard test images, a phantom positron-emission-tomography scan and a B-mode echography of in-vivo human dermis.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2014.2383318</identifier><identifier>PMID: 25532177</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active contours ; Algorithm design and analysis ; Algorithms ; Breast Neoplasms - pathology ; Computer Science ; Convergence ; Dermis - diagnostic imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Information geometry ; level sets ; Manifolds ; Models, Biological ; Phantoms, Imaging ; Positron-Emission Tomography ; Smoothing methods ; Ultrasonography ; variational methods on Riemannian manifolds</subject><ispartof>IEEE transactions on image processing, 2015-03, Vol.24 (3), p.836-845</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-fa45b7463fcf0f6f62c1e4f38e7cd72c2933b7452a721258735bfeca850a634e3</citedby><cites>FETCH-LOGICAL-c395t-fa45b7463fcf0f6f62c1e4f38e7cd72c2933b7452a721258735bfeca850a634e3</cites><orcidid>0000-0003-0433-2152 ; 0000-0001-6438-6772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6990574$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25532177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03190208$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pereyra, Marcelo</creatorcontrib><creatorcontrib>Batatia, Hadj</creatorcontrib><creatorcontrib>McLaughlin, Steve</creatorcontrib><title>Exploiting Information Geometry to Improve the Convergence of Nonparametric Active Contours</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper presents a fast converging Riemannian steepest descent method for nonparametric statistical active contour models, with application to image segmentation. Unlike other fast algorithms, the proposed method is general and can be applied to any statistical active contour model from the exponential family, which comprises most of the models considered in the literature. This is achieved by first identifying the intrinsic statistical manifold associated with this class of active contours, and then constructing a steepest descent on that manifold. A key contribution of this paper is to derive a general and tractable closed-form analytic expression for the manifold's Riemannian metric tensor, which allows computing discrete gradient flows efficiently. The proposed methodology is demonstrated empirically and compared with other state of the art approaches on several standard test images, a phantom positron-emission-tomography scan and a B-mode echography of in-vivo human dermis.</description><subject>Active contours</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Breast Neoplasms - pathology</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Dermis - diagnostic imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Information geometry</subject><subject>level sets</subject><subject>Manifolds</subject><subject>Models, Biological</subject><subject>Phantoms, Imaging</subject><subject>Positron-Emission Tomography</subject><subject>Smoothing methods</subject><subject>Ultrasonography</subject><subject>variational methods on Riemannian manifolds</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kU1vEzEQhi0EoqX0joSEfITDBo8_1rvHKCptpIhyKKceLMcdt0a762A7Ufvv65CQk0eeZ15pniHkE7AZAOu_3y1_zTgDOeOiEwK6N-QcegkNY5K_rTVTutEg-zPyIec_rJIK2vfkjCslOGh9Tu6vnjdDDCVMj3Q5-ZhGW0Kc6DXGEUt6oSXS5bhJcYe0PCFdxGmH6REnhzR6-jNOG5vsHg2Ozl0Ju39MiduUP5J33g4ZL4_vBfn94-pucdOsbq-Xi_mqcaJXpfFWqrWWrfDOM9_6ljtA6UWH2j1o7ngvRO0rbjUHrjot1Nqjs51ithUSxQX5dsh9soPZpDDa9GKiDeZmvjL7PyagZ5x1O6js1wNbV_q7xVzMGLLDYbATxm020CouBUjJK8oOqEsx54T-lA3M7PWbqt_s9Zuj_jry5Zi-XY_4cBr477sCnw9AQMRTu-37eikpXgFYqIiy</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Pereyra, Marcelo</creator><creator>Batatia, Hadj</creator><creator>McLaughlin, Steve</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0433-2152</orcidid><orcidid>https://orcid.org/0000-0001-6438-6772</orcidid></search><sort><creationdate>20150301</creationdate><title>Exploiting Information Geometry to Improve the Convergence of Nonparametric Active Contours</title><author>Pereyra, Marcelo ; Batatia, Hadj ; McLaughlin, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-fa45b7463fcf0f6f62c1e4f38e7cd72c2933b7452a721258735bfeca850a634e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active contours</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Breast Neoplasms - pathology</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Dermis - diagnostic imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Information geometry</topic><topic>level sets</topic><topic>Manifolds</topic><topic>Models, Biological</topic><topic>Phantoms, Imaging</topic><topic>Positron-Emission Tomography</topic><topic>Smoothing methods</topic><topic>Ultrasonography</topic><topic>variational methods on Riemannian manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereyra, Marcelo</creatorcontrib><creatorcontrib>Batatia, Hadj</creatorcontrib><creatorcontrib>McLaughlin, Steve</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereyra, Marcelo</au><au>Batatia, Hadj</au><au>McLaughlin, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Information Geometry to Improve the Convergence of Nonparametric Active Contours</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>24</volume><issue>3</issue><spage>836</spage><epage>845</epage><pages>836-845</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper presents a fast converging Riemannian steepest descent method for nonparametric statistical active contour models, with application to image segmentation. Unlike other fast algorithms, the proposed method is general and can be applied to any statistical active contour model from the exponential family, which comprises most of the models considered in the literature. This is achieved by first identifying the intrinsic statistical manifold associated with this class of active contours, and then constructing a steepest descent on that manifold. A key contribution of this paper is to derive a general and tractable closed-form analytic expression for the manifold's Riemannian metric tensor, which allows computing discrete gradient flows efficiently. The proposed methodology is demonstrated empirically and compared with other state of the art approaches on several standard test images, a phantom positron-emission-tomography scan and a B-mode echography of in-vivo human dermis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25532177</pmid><doi>10.1109/TIP.2014.2383318</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0433-2152</orcidid><orcidid>https://orcid.org/0000-0001-6438-6772</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2015-03, Vol.24 (3), p.836-845 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2014_2383318 |
source | MEDLINE; IEEE Electronic Library (IEL) |
subjects | Active contours Algorithm design and analysis Algorithms Breast Neoplasms - pathology Computer Science Convergence Dermis - diagnostic imaging Humans Image Processing, Computer-Assisted - methods Image segmentation Information geometry level sets Manifolds Models, Biological Phantoms, Imaging Positron-Emission Tomography Smoothing methods Ultrasonography variational methods on Riemannian manifolds |
title | Exploiting Information Geometry to Improve the Convergence of Nonparametric Active Contours |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Information%20Geometry%20to%20Improve%20the%20Convergence%20of%20Nonparametric%20Active%20Contours&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Pereyra,%20Marcelo&rft.date=2015-03-01&rft.volume=24&rft.issue=3&rft.spage=836&rft.epage=845&rft.pages=836-845&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2014.2383318&rft_dat=%3Cproquest_cross%3E1652431442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652431442&rft_id=info:pmid/25532177&rft_ieee_id=6990574&rfr_iscdi=true |