Exploiting Information Geometry to Improve the Convergence of Nonparametric Active Contours

This paper presents a fast converging Riemannian steepest descent method for nonparametric statistical active contour models, with application to image segmentation. Unlike other fast algorithms, the proposed method is general and can be applied to any statistical active contour model from the expon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2015-03, Vol.24 (3), p.836-845
Hauptverfasser: Pereyra, Marcelo, Batatia, Hadj, McLaughlin, Steve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 845
container_issue 3
container_start_page 836
container_title IEEE transactions on image processing
container_volume 24
creator Pereyra, Marcelo
Batatia, Hadj
McLaughlin, Steve
description This paper presents a fast converging Riemannian steepest descent method for nonparametric statistical active contour models, with application to image segmentation. Unlike other fast algorithms, the proposed method is general and can be applied to any statistical active contour model from the exponential family, which comprises most of the models considered in the literature. This is achieved by first identifying the intrinsic statistical manifold associated with this class of active contours, and then constructing a steepest descent on that manifold. A key contribution of this paper is to derive a general and tractable closed-form analytic expression for the manifold's Riemannian metric tensor, which allows computing discrete gradient flows efficiently. The proposed methodology is demonstrated empirically and compared with other state of the art approaches on several standard test images, a phantom positron-emission-tomography scan and a B-mode echography of in-vivo human dermis.
doi_str_mv 10.1109/TIP.2014.2383318
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2014_2383318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6990574</ieee_id><sourcerecordid>1652431442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-fa45b7463fcf0f6f62c1e4f38e7cd72c2933b7452a721258735bfeca850a634e3</originalsourceid><addsrcrecordid>eNo9kU1vEzEQhi0EoqX0joSEfITDBo8_1rvHKCptpIhyKKceLMcdt0a762A7Ufvv65CQk0eeZ15pniHkE7AZAOu_3y1_zTgDOeOiEwK6N-QcegkNY5K_rTVTutEg-zPyIec_rJIK2vfkjCslOGh9Tu6vnjdDDCVMj3Q5-ZhGW0Kc6DXGEUt6oSXS5bhJcYe0PCFdxGmH6REnhzR6-jNOG5vsHg2Ozl0Ju39MiduUP5J33g4ZL4_vBfn94-pucdOsbq-Xi_mqcaJXpfFWqrWWrfDOM9_6ljtA6UWH2j1o7ngvRO0rbjUHrjot1Nqjs51ithUSxQX5dsh9soPZpDDa9GKiDeZmvjL7PyagZ5x1O6js1wNbV_q7xVzMGLLDYbATxm020CouBUjJK8oOqEsx54T-lA3M7PWbqt_s9Zuj_jry5Zi-XY_4cBr477sCnw9AQMRTu-37eikpXgFYqIiy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652431442</pqid></control><display><type>article</type><title>Exploiting Information Geometry to Improve the Convergence of Nonparametric Active Contours</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Pereyra, Marcelo ; Batatia, Hadj ; McLaughlin, Steve</creator><creatorcontrib>Pereyra, Marcelo ; Batatia, Hadj ; McLaughlin, Steve</creatorcontrib><description>This paper presents a fast converging Riemannian steepest descent method for nonparametric statistical active contour models, with application to image segmentation. Unlike other fast algorithms, the proposed method is general and can be applied to any statistical active contour model from the exponential family, which comprises most of the models considered in the literature. This is achieved by first identifying the intrinsic statistical manifold associated with this class of active contours, and then constructing a steepest descent on that manifold. A key contribution of this paper is to derive a general and tractable closed-form analytic expression for the manifold's Riemannian metric tensor, which allows computing discrete gradient flows efficiently. The proposed methodology is demonstrated empirically and compared with other state of the art approaches on several standard test images, a phantom positron-emission-tomography scan and a B-mode echography of in-vivo human dermis.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2014.2383318</identifier><identifier>PMID: 25532177</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active contours ; Algorithm design and analysis ; Algorithms ; Breast Neoplasms - pathology ; Computer Science ; Convergence ; Dermis - diagnostic imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Information geometry ; level sets ; Manifolds ; Models, Biological ; Phantoms, Imaging ; Positron-Emission Tomography ; Smoothing methods ; Ultrasonography ; variational methods on Riemannian manifolds</subject><ispartof>IEEE transactions on image processing, 2015-03, Vol.24 (3), p.836-845</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-fa45b7463fcf0f6f62c1e4f38e7cd72c2933b7452a721258735bfeca850a634e3</citedby><cites>FETCH-LOGICAL-c395t-fa45b7463fcf0f6f62c1e4f38e7cd72c2933b7452a721258735bfeca850a634e3</cites><orcidid>0000-0003-0433-2152 ; 0000-0001-6438-6772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6990574$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25532177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03190208$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pereyra, Marcelo</creatorcontrib><creatorcontrib>Batatia, Hadj</creatorcontrib><creatorcontrib>McLaughlin, Steve</creatorcontrib><title>Exploiting Information Geometry to Improve the Convergence of Nonparametric Active Contours</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper presents a fast converging Riemannian steepest descent method for nonparametric statistical active contour models, with application to image segmentation. Unlike other fast algorithms, the proposed method is general and can be applied to any statistical active contour model from the exponential family, which comprises most of the models considered in the literature. This is achieved by first identifying the intrinsic statistical manifold associated with this class of active contours, and then constructing a steepest descent on that manifold. A key contribution of this paper is to derive a general and tractable closed-form analytic expression for the manifold's Riemannian metric tensor, which allows computing discrete gradient flows efficiently. The proposed methodology is demonstrated empirically and compared with other state of the art approaches on several standard test images, a phantom positron-emission-tomography scan and a B-mode echography of in-vivo human dermis.</description><subject>Active contours</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Breast Neoplasms - pathology</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Dermis - diagnostic imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Information geometry</subject><subject>level sets</subject><subject>Manifolds</subject><subject>Models, Biological</subject><subject>Phantoms, Imaging</subject><subject>Positron-Emission Tomography</subject><subject>Smoothing methods</subject><subject>Ultrasonography</subject><subject>variational methods on Riemannian manifolds</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kU1vEzEQhi0EoqX0joSEfITDBo8_1rvHKCptpIhyKKceLMcdt0a762A7Ufvv65CQk0eeZ15pniHkE7AZAOu_3y1_zTgDOeOiEwK6N-QcegkNY5K_rTVTutEg-zPyIec_rJIK2vfkjCslOGh9Tu6vnjdDDCVMj3Q5-ZhGW0Kc6DXGEUt6oSXS5bhJcYe0PCFdxGmH6REnhzR6-jNOG5vsHg2Ozl0Ju39MiduUP5J33g4ZL4_vBfn94-pucdOsbq-Xi_mqcaJXpfFWqrWWrfDOM9_6ljtA6UWH2j1o7ngvRO0rbjUHrjot1Nqjs51ithUSxQX5dsh9soPZpDDa9GKiDeZmvjL7PyagZ5x1O6js1wNbV_q7xVzMGLLDYbATxm020CouBUjJK8oOqEsx54T-lA3M7PWbqt_s9Zuj_jry5Zi-XY_4cBr477sCnw9AQMRTu-37eikpXgFYqIiy</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Pereyra, Marcelo</creator><creator>Batatia, Hadj</creator><creator>McLaughlin, Steve</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0433-2152</orcidid><orcidid>https://orcid.org/0000-0001-6438-6772</orcidid></search><sort><creationdate>20150301</creationdate><title>Exploiting Information Geometry to Improve the Convergence of Nonparametric Active Contours</title><author>Pereyra, Marcelo ; Batatia, Hadj ; McLaughlin, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-fa45b7463fcf0f6f62c1e4f38e7cd72c2933b7452a721258735bfeca850a634e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active contours</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Breast Neoplasms - pathology</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Dermis - diagnostic imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Information geometry</topic><topic>level sets</topic><topic>Manifolds</topic><topic>Models, Biological</topic><topic>Phantoms, Imaging</topic><topic>Positron-Emission Tomography</topic><topic>Smoothing methods</topic><topic>Ultrasonography</topic><topic>variational methods on Riemannian manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereyra, Marcelo</creatorcontrib><creatorcontrib>Batatia, Hadj</creatorcontrib><creatorcontrib>McLaughlin, Steve</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereyra, Marcelo</au><au>Batatia, Hadj</au><au>McLaughlin, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Information Geometry to Improve the Convergence of Nonparametric Active Contours</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>24</volume><issue>3</issue><spage>836</spage><epage>845</epage><pages>836-845</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper presents a fast converging Riemannian steepest descent method for nonparametric statistical active contour models, with application to image segmentation. Unlike other fast algorithms, the proposed method is general and can be applied to any statistical active contour model from the exponential family, which comprises most of the models considered in the literature. This is achieved by first identifying the intrinsic statistical manifold associated with this class of active contours, and then constructing a steepest descent on that manifold. A key contribution of this paper is to derive a general and tractable closed-form analytic expression for the manifold's Riemannian metric tensor, which allows computing discrete gradient flows efficiently. The proposed methodology is demonstrated empirically and compared with other state of the art approaches on several standard test images, a phantom positron-emission-tomography scan and a B-mode echography of in-vivo human dermis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25532177</pmid><doi>10.1109/TIP.2014.2383318</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0433-2152</orcidid><orcidid>https://orcid.org/0000-0001-6438-6772</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2015-03, Vol.24 (3), p.836-845
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2014_2383318
source MEDLINE; IEEE Electronic Library (IEL)
subjects Active contours
Algorithm design and analysis
Algorithms
Breast Neoplasms - pathology
Computer Science
Convergence
Dermis - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Information geometry
level sets
Manifolds
Models, Biological
Phantoms, Imaging
Positron-Emission Tomography
Smoothing methods
Ultrasonography
variational methods on Riemannian manifolds
title Exploiting Information Geometry to Improve the Convergence of Nonparametric Active Contours
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Information%20Geometry%20to%20Improve%20the%20Convergence%20of%20Nonparametric%20Active%20Contours&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Pereyra,%20Marcelo&rft.date=2015-03-01&rft.volume=24&rft.issue=3&rft.spage=836&rft.epage=845&rft.pages=836-845&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2014.2383318&rft_dat=%3Cproquest_cross%3E1652431442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652431442&rft_id=info:pmid/25532177&rft_ieee_id=6990574&rfr_iscdi=true