Robust Deformable and Occluded Object Tracking With Dynamic Graph

While some efforts have been paid to handle deformation and occlusion in visual tracking, they are still great challenges. In this paper, a dynamic graph-based tracker (DGT) is proposed to address these two challenges in a unified framework. In the dynamic target graph, nodes are the target local pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2014-12, Vol.23 (12), p.5497-5509
Hauptverfasser: Cai, Zhaowei, Wen, Longyin, Lei, Zhen, Vasconcelos, Nuno, Li, Stan Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While some efforts have been paid to handle deformation and occlusion in visual tracking, they are still great challenges. In this paper, a dynamic graph-based tracker (DGT) is proposed to address these two challenges in a unified framework. In the dynamic target graph, nodes are the target local parts encoding appearance information, and edges are the interactions between nodes encoding inner geometric structure information. This graph representation provides much more information for tracking in the presence of deformation and occlusion. The target tracking is then formulated as tracking this dynamic undirected graph, which is also a matching problem between the target graph and the candidate graph. The local parts within the candidate graph are separated from the background with Markov random field, and spectral clustering is used to solve the graph matching. The final target state is determined through a weighted voting procedure according to the reliability of part correspondence, and refined with recourse to a foreground/background segmentation. An effective online updating mechanism is proposed to update the model, allowing DGT to robustly adapt to variations of target structure. Experimental results show improved performance over several state-of-the-art trackers, in various challenging scenarios.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2014.2364919