Fusion of Multichannel Local and Global Structural Cues for Photo Aesthetics Evaluation
Photo aesthetic quality evaluation is a fundamental yet under addressed task in computer vision and image processing fields. Conventional approaches are frustrated by the following two drawbacks. First, both the local and global spatial arrangements of image regions play an important role in photo a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2014-03, Vol.23 (3), p.1419-1429 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1429 |
---|---|
container_issue | 3 |
container_start_page | 1419 |
container_title | IEEE transactions on image processing |
container_volume | 23 |
creator | Luming Zhang Yue Gao Zimmermann, Roger Qi Tian Xuelong Li |
description | Photo aesthetic quality evaluation is a fundamental yet under addressed task in computer vision and image processing fields. Conventional approaches are frustrated by the following two drawbacks. First, both the local and global spatial arrangements of image regions play an important role in photo aesthetics. However, existing rules, e.g., visual balance, heuristically define which spatial distribution among the salient regions of a photo is aesthetically pleasing. Second, it is difficult to adjust visual cues from multiple channels automatically in photo aesthetics assessment. To solve these problems, we propose a new photo aesthetics evaluation framework, focusing on learning the image descriptors that characterize local and global structural aesthetics from multiple visual channels. In particular, to describe the spatial structure of the image local regions, we construct graphlets small-sized connected graphs by connecting spatially adjacent atomic regions. Since spatially adjacent graphlets distribute closely in their feature space, we project them onto a manifold and subsequently propose an embedding algorithm. The embedding algorithm encodes the photo global spatial layout into graphlets. Simultaneously, the importance of graphlets from multiple visual channels are dynamically adjusted. Finally, these post-embedding graphlets are integrated for photo aesthetics evaluation using a probabilistic model. Experimental results show that: 1) the visualized graphlets explicitly capture the aesthetically arranged atomic regions; 2) the proposed approach generalizes and improves four prominent aesthetic rules; and 3) our approach significantly outperforms state-of-the-art algorithms in photo aesthetics prediction. |
doi_str_mv | 10.1109/TIP.2014.2303650 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2014_2303650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6728663</ieee_id><sourcerecordid>1520936956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-2fcc4c25acaf7298fb61705f5a0338fc469e13e9dfe8298ba91187f8998d00163</originalsourceid><addsrcrecordid>eNqNkctLKzEYxYMoPqp74cIlcBHcTM17kqUUX1BRUHE5pGlCR6YTTSYX_O_9SquCK1c5cH7nkI-D0DElY0qJOXu8uR8zQsWYccKVJFtonxpBK0IE2wZNZF3VVJg9dJDzCwFSUrWL9pioGZe83kfPlyW3sccx4NvSDa1b2L73HZ5GZzts-zm-6uIM5MOQihtKAjkpPuMQE75fxCHic5-HhYdoxhf_bVfsAIWHaCfYLvujzTtCT5cXj5Pranp3dTM5n1ZOUDJULDgnHJPW2VAzo8NM0ZrIIC3hXAcnlPGUezMPXoM9s4ZSXQdtjJ7DOYqP0Om69zXFN_jX0Czb7HzX2d7HkhsqGTFcGfkblEoltGAc0H8_0JdYUg-HrCgmiGSAjRBZUy7FnJMPzWtqlza9N5Q0q30a2KdZ7dNs9oHI301xmS39_CvwOQgAJxvAZlggJNu7Nn9zWhiluADuz5prvfdftqqZBpt_AErunr0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512405242</pqid></control><display><type>article</type><title>Fusion of Multichannel Local and Global Structural Cues for Photo Aesthetics Evaluation</title><source>IEEE Electronic Library (IEL)</source><creator>Luming Zhang ; Yue Gao ; Zimmermann, Roger ; Qi Tian ; Xuelong Li</creator><creatorcontrib>Luming Zhang ; Yue Gao ; Zimmermann, Roger ; Qi Tian ; Xuelong Li</creatorcontrib><description>Photo aesthetic quality evaluation is a fundamental yet under addressed task in computer vision and image processing fields. Conventional approaches are frustrated by the following two drawbacks. First, both the local and global spatial arrangements of image regions play an important role in photo aesthetics. However, existing rules, e.g., visual balance, heuristically define which spatial distribution among the salient regions of a photo is aesthetically pleasing. Second, it is difficult to adjust visual cues from multiple channels automatically in photo aesthetics assessment. To solve these problems, we propose a new photo aesthetics evaluation framework, focusing on learning the image descriptors that characterize local and global structural aesthetics from multiple visual channels. In particular, to describe the spatial structure of the image local regions, we construct graphlets small-sized connected graphs by connecting spatially adjacent atomic regions. Since spatially adjacent graphlets distribute closely in their feature space, we project them onto a manifold and subsequently propose an embedding algorithm. The embedding algorithm encodes the photo global spatial layout into graphlets. Simultaneously, the importance of graphlets from multiple visual channels are dynamically adjusted. Finally, these post-embedding graphlets are integrated for photo aesthetics evaluation using a probabilistic model. Experimental results show that: 1) the visualized graphlets explicitly capture the aesthetically arranged atomic regions; 2) the proposed approach generalizes and improves four prominent aesthetic rules; and 3) our approach significantly outperforms state-of-the-art algorithms in photo aesthetics prediction.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2014.2303650</identifier><identifier>PMID: 24723537</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>aesthetic evaluation ; Aesthetics ; Algorithms ; Applied sciences ; Artificial intelligence ; Atomic structure ; Biomimetics - methods ; Channels ; Computer science; control theory; systems ; Cues ; Esthetics ; Exact sciences and technology ; Graphical models ; Image color analysis ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Information, signal and communications theory ; Layout ; Mathematical models ; Multi-channel ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Photography - methods ; Probabilistic logic ; probabilistic model ; Signal processing ; structural cues ; Telecommunications and information theory ; Training ; Vectors ; Visual ; Visualization</subject><ispartof>IEEE transactions on image processing, 2014-03, Vol.23 (3), p.1419-1429</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-2fcc4c25acaf7298fb61705f5a0338fc469e13e9dfe8298ba91187f8998d00163</citedby><cites>FETCH-LOGICAL-c410t-2fcc4c25acaf7298fb61705f5a0338fc469e13e9dfe8298ba91187f8998d00163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6728663$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6728663$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28496634$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24723537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luming Zhang</creatorcontrib><creatorcontrib>Yue Gao</creatorcontrib><creatorcontrib>Zimmermann, Roger</creatorcontrib><creatorcontrib>Qi Tian</creatorcontrib><creatorcontrib>Xuelong Li</creatorcontrib><title>Fusion of Multichannel Local and Global Structural Cues for Photo Aesthetics Evaluation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Photo aesthetic quality evaluation is a fundamental yet under addressed task in computer vision and image processing fields. Conventional approaches are frustrated by the following two drawbacks. First, both the local and global spatial arrangements of image regions play an important role in photo aesthetics. However, existing rules, e.g., visual balance, heuristically define which spatial distribution among the salient regions of a photo is aesthetically pleasing. Second, it is difficult to adjust visual cues from multiple channels automatically in photo aesthetics assessment. To solve these problems, we propose a new photo aesthetics evaluation framework, focusing on learning the image descriptors that characterize local and global structural aesthetics from multiple visual channels. In particular, to describe the spatial structure of the image local regions, we construct graphlets small-sized connected graphs by connecting spatially adjacent atomic regions. Since spatially adjacent graphlets distribute closely in their feature space, we project them onto a manifold and subsequently propose an embedding algorithm. The embedding algorithm encodes the photo global spatial layout into graphlets. Simultaneously, the importance of graphlets from multiple visual channels are dynamically adjusted. Finally, these post-embedding graphlets are integrated for photo aesthetics evaluation using a probabilistic model. Experimental results show that: 1) the visualized graphlets explicitly capture the aesthetically arranged atomic regions; 2) the proposed approach generalizes and improves four prominent aesthetic rules; and 3) our approach significantly outperforms state-of-the-art algorithms in photo aesthetics prediction.</description><subject>aesthetic evaluation</subject><subject>Aesthetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Atomic structure</subject><subject>Biomimetics - methods</subject><subject>Channels</subject><subject>Computer science; control theory; systems</subject><subject>Cues</subject><subject>Esthetics</subject><subject>Exact sciences and technology</subject><subject>Graphical models</subject><subject>Image color analysis</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Layout</subject><subject>Mathematical models</subject><subject>Multi-channel</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Photography - methods</subject><subject>Probabilistic logic</subject><subject>probabilistic model</subject><subject>Signal processing</subject><subject>structural cues</subject><subject>Telecommunications and information theory</subject><subject>Training</subject><subject>Vectors</subject><subject>Visual</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkctLKzEYxYMoPqp74cIlcBHcTM17kqUUX1BRUHE5pGlCR6YTTSYX_O_9SquCK1c5cH7nkI-D0DElY0qJOXu8uR8zQsWYccKVJFtonxpBK0IE2wZNZF3VVJg9dJDzCwFSUrWL9pioGZe83kfPlyW3sccx4NvSDa1b2L73HZ5GZzts-zm-6uIM5MOQihtKAjkpPuMQE75fxCHic5-HhYdoxhf_bVfsAIWHaCfYLvujzTtCT5cXj5Pranp3dTM5n1ZOUDJULDgnHJPW2VAzo8NM0ZrIIC3hXAcnlPGUezMPXoM9s4ZSXQdtjJ7DOYqP0Om69zXFN_jX0Czb7HzX2d7HkhsqGTFcGfkblEoltGAc0H8_0JdYUg-HrCgmiGSAjRBZUy7FnJMPzWtqlza9N5Q0q30a2KdZ7dNs9oHI301xmS39_CvwOQgAJxvAZlggJNu7Nn9zWhiluADuz5prvfdftqqZBpt_AErunr0</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Luming Zhang</creator><creator>Yue Gao</creator><creator>Zimmermann, Roger</creator><creator>Qi Tian</creator><creator>Xuelong Li</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7U5</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140301</creationdate><title>Fusion of Multichannel Local and Global Structural Cues for Photo Aesthetics Evaluation</title><author>Luming Zhang ; Yue Gao ; Zimmermann, Roger ; Qi Tian ; Xuelong Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-2fcc4c25acaf7298fb61705f5a0338fc469e13e9dfe8298ba91187f8998d00163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>aesthetic evaluation</topic><topic>Aesthetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Atomic structure</topic><topic>Biomimetics - methods</topic><topic>Channels</topic><topic>Computer science; control theory; systems</topic><topic>Cues</topic><topic>Esthetics</topic><topic>Exact sciences and technology</topic><topic>Graphical models</topic><topic>Image color analysis</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Layout</topic><topic>Mathematical models</topic><topic>Multi-channel</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Photography - methods</topic><topic>Probabilistic logic</topic><topic>probabilistic model</topic><topic>Signal processing</topic><topic>structural cues</topic><topic>Telecommunications and information theory</topic><topic>Training</topic><topic>Vectors</topic><topic>Visual</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luming Zhang</creatorcontrib><creatorcontrib>Yue Gao</creatorcontrib><creatorcontrib>Zimmermann, Roger</creatorcontrib><creatorcontrib>Qi Tian</creatorcontrib><creatorcontrib>Xuelong Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luming Zhang</au><au>Yue Gao</au><au>Zimmermann, Roger</au><au>Qi Tian</au><au>Xuelong Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of Multichannel Local and Global Structural Cues for Photo Aesthetics Evaluation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>23</volume><issue>3</issue><spage>1419</spage><epage>1429</epage><pages>1419-1429</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Photo aesthetic quality evaluation is a fundamental yet under addressed task in computer vision and image processing fields. Conventional approaches are frustrated by the following two drawbacks. First, both the local and global spatial arrangements of image regions play an important role in photo aesthetics. However, existing rules, e.g., visual balance, heuristically define which spatial distribution among the salient regions of a photo is aesthetically pleasing. Second, it is difficult to adjust visual cues from multiple channels automatically in photo aesthetics assessment. To solve these problems, we propose a new photo aesthetics evaluation framework, focusing on learning the image descriptors that characterize local and global structural aesthetics from multiple visual channels. In particular, to describe the spatial structure of the image local regions, we construct graphlets small-sized connected graphs by connecting spatially adjacent atomic regions. Since spatially adjacent graphlets distribute closely in their feature space, we project them onto a manifold and subsequently propose an embedding algorithm. The embedding algorithm encodes the photo global spatial layout into graphlets. Simultaneously, the importance of graphlets from multiple visual channels are dynamically adjusted. Finally, these post-embedding graphlets are integrated for photo aesthetics evaluation using a probabilistic model. Experimental results show that: 1) the visualized graphlets explicitly capture the aesthetically arranged atomic regions; 2) the proposed approach generalizes and improves four prominent aesthetic rules; and 3) our approach significantly outperforms state-of-the-art algorithms in photo aesthetics prediction.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24723537</pmid><doi>10.1109/TIP.2014.2303650</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2014-03, Vol.23 (3), p.1419-1429 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2014_2303650 |
source | IEEE Electronic Library (IEL) |
subjects | aesthetic evaluation Aesthetics Algorithms Applied sciences Artificial intelligence Atomic structure Biomimetics - methods Channels Computer science control theory systems Cues Esthetics Exact sciences and technology Graphical models Image color analysis Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Information, signal and communications theory Layout Mathematical models Multi-channel Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Photography - methods Probabilistic logic probabilistic model Signal processing structural cues Telecommunications and information theory Training Vectors Visual Visualization |
title | Fusion of Multichannel Local and Global Structural Cues for Photo Aesthetics Evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20Multichannel%20Local%20and%20Global%20Structural%20Cues%20for%20Photo%20Aesthetics%20Evaluation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Luming%20Zhang&rft.date=2014-03-01&rft.volume=23&rft.issue=3&rft.spage=1419&rft.epage=1429&rft.pages=1419-1429&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2014.2303650&rft_dat=%3Cproquest_RIE%3E1520936956%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512405242&rft_id=info:pmid/24723537&rft_ieee_id=6728663&rfr_iscdi=true |