Evaluating Combinational Illumination Estimation Methods on Real-World Images

Illumination estimation is an important component of color constancy and automatic white balancing. A number of methods of combining illumination estimates obtained from multiple subordinate illumination estimation methods now appear in the literature. These combinational methods aim to provide bett...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2014-03, Vol.23 (3), p.1194-1209
Hauptverfasser: Li, Bing, Xiong, Weihua, Hu, Weiming, Funt, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1209
container_issue 3
container_start_page 1194
container_title IEEE transactions on image processing
container_volume 23
creator Li, Bing
Xiong, Weihua
Hu, Weiming
Funt, Brian
description Illumination estimation is an important component of color constancy and automatic white balancing. A number of methods of combining illumination estimates obtained from multiple subordinate illumination estimation methods now appear in the literature. These combinational methods aim to provide better illumination estimates by fusing the information embedded in the subordinate solutions. The existing combinational methods are surveyed and analyzed here with the goals of determining: 1) the effectiveness of fusing illumination estimates from multiple subordinate methods; 2) the best method of combination; 3) the underlying factors that affect the performance of a combinational method; and 4) the effectiveness of combination for illumination estimation in multiple-illuminant scenes. The various combinational methods are categorized in terms of whether or not they require supervised training and whether or not they rely on high-level scene content cues (e.g., indoor versus outdoor). Extensive tests and enhanced analyzes using three data sets of real-world images are conducted. For consistency in testing, the images were labeled according to their high-level features (3D stages, indoor/outdoor) and this label data is made available on-line. The tests reveal that the trained combinational methods (direct combination by support vector regression in particular) clearly outperform both the non-combinational methods and those combinational methods based on scene content cues.
doi_str_mv 10.1109/TIP.2013.2277943
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2013_2277943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6583331</ieee_id><sourcerecordid>1520975988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-4db9ad215e925e60540ca24d1283afd80b2bcc2b8f128c58c78bfad4da7f9a673</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpaNK090KhGEqhF29n9K1jWTbJQkJCSOnRyJKcOsh2atmF_PtoWTeBnHLSK-mZgZmHkE8IK0QwP262VysKyFaUKmU4e0OO0HAsATh9mzMIVSrk5pC8T-kOALlA-Y4cUmYUl5QfkYvNPxtnO7X9bbEeurrtcx56G4ttjHO3XItNmtpuHy_C9GfwqcjxOthY_h7G6IttZ29D-kAOGhtT-Licx-TXyeZmfVaeX55u1z_PS8cRppL72lhPUQRDRZAgODhLuUeqmW28hprWztFaN_nFCe2UrhvrubeqMVYqdky-7_vej8PfOaSp6trkQoy2D8OcKhQUjBJG61egKCTXHE1Gv75A74Z5zLvYUcAlk0pCpmBPuXFIaQxNdT_m3YwPFUK1s1JlK9XOSrVYySVflsZz3QX_VPBfQwa-LYBNzsZmtL1r0zOnuZESd3N_3nNtCOHpWwrNGEP2CPSCnHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504636760</pqid></control><display><type>article</type><title>Evaluating Combinational Illumination Estimation Methods on Real-World Images</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Bing ; Xiong, Weihua ; Hu, Weiming ; Funt, Brian</creator><creatorcontrib>Li, Bing ; Xiong, Weihua ; Hu, Weiming ; Funt, Brian</creatorcontrib><description>Illumination estimation is an important component of color constancy and automatic white balancing. A number of methods of combining illumination estimates obtained from multiple subordinate illumination estimation methods now appear in the literature. These combinational methods aim to provide better illumination estimates by fusing the information embedded in the subordinate solutions. The existing combinational methods are surveyed and analyzed here with the goals of determining: 1) the effectiveness of fusing illumination estimates from multiple subordinate methods; 2) the best method of combination; 3) the underlying factors that affect the performance of a combinational method; and 4) the effectiveness of combination for illumination estimation in multiple-illuminant scenes. The various combinational methods are categorized in terms of whether or not they require supervised training and whether or not they rely on high-level scene content cues (e.g., indoor versus outdoor). Extensive tests and enhanced analyzes using three data sets of real-world images are conducted. For consistency in testing, the images were labeled according to their high-level features (3D stages, indoor/outdoor) and this label data is made available on-line. The tests reveal that the trained combinational methods (direct combination by support vector regression in particular) clearly outperform both the non-combinational methods and those combinational methods based on scene content cues.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2277943</identifier><identifier>PMID: 23974624</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; automatic white balance ; Color ; color constancy ; Colorimetry - methods ; committee-based ; Cues ; Estimates ; Estimation ; Exact sciences and technology ; Geometry ; Illumination ; Illumination estimation ; Image color analysis ; Image edge detection ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Imaging, Three-Dimensional - methods ; Indoor ; Information theory ; Information, signal and communications theory ; Lighting ; Lighting - methods ; Methods ; Outdoor ; Regression ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Support vector machines ; Telecommunications and information theory ; Three dimensional ; Training</subject><ispartof>IEEE transactions on image processing, 2014-03, Vol.23 (3), p.1194-1209</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-4db9ad215e925e60540ca24d1283afd80b2bcc2b8f128c58c78bfad4da7f9a673</citedby><cites>FETCH-LOGICAL-c410t-4db9ad215e925e60540ca24d1283afd80b2bcc2b8f128c58c78bfad4da7f9a673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6583331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6583331$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28496617$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23974624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Xiong, Weihua</creatorcontrib><creatorcontrib>Hu, Weiming</creatorcontrib><creatorcontrib>Funt, Brian</creatorcontrib><title>Evaluating Combinational Illumination Estimation Methods on Real-World Images</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Illumination estimation is an important component of color constancy and automatic white balancing. A number of methods of combining illumination estimates obtained from multiple subordinate illumination estimation methods now appear in the literature. These combinational methods aim to provide better illumination estimates by fusing the information embedded in the subordinate solutions. The existing combinational methods are surveyed and analyzed here with the goals of determining: 1) the effectiveness of fusing illumination estimates from multiple subordinate methods; 2) the best method of combination; 3) the underlying factors that affect the performance of a combinational method; and 4) the effectiveness of combination for illumination estimation in multiple-illuminant scenes. The various combinational methods are categorized in terms of whether or not they require supervised training and whether or not they rely on high-level scene content cues (e.g., indoor versus outdoor). Extensive tests and enhanced analyzes using three data sets of real-world images are conducted. For consistency in testing, the images were labeled according to their high-level features (3D stages, indoor/outdoor) and this label data is made available on-line. The tests reveal that the trained combinational methods (direct combination by support vector regression in particular) clearly outperform both the non-combinational methods and those combinational methods based on scene content cues.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>automatic white balance</subject><subject>Color</subject><subject>color constancy</subject><subject>Colorimetry - methods</subject><subject>committee-based</subject><subject>Cues</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Illumination</subject><subject>Illumination estimation</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Indoor</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Lighting</subject><subject>Lighting - methods</subject><subject>Methods</subject><subject>Outdoor</subject><subject>Regression</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Support vector machines</subject><subject>Telecommunications and information theory</subject><subject>Three dimensional</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1r3DAQhkVpaNK090KhGEqhF29n9K1jWTbJQkJCSOnRyJKcOsh2atmF_PtoWTeBnHLSK-mZgZmHkE8IK0QwP262VysKyFaUKmU4e0OO0HAsATh9mzMIVSrk5pC8T-kOALlA-Y4cUmYUl5QfkYvNPxtnO7X9bbEeurrtcx56G4ttjHO3XItNmtpuHy_C9GfwqcjxOthY_h7G6IttZ29D-kAOGhtT-Licx-TXyeZmfVaeX55u1z_PS8cRppL72lhPUQRDRZAgODhLuUeqmW28hprWztFaN_nFCe2UrhvrubeqMVYqdky-7_vej8PfOaSp6trkQoy2D8OcKhQUjBJG61egKCTXHE1Gv75A74Z5zLvYUcAlk0pCpmBPuXFIaQxNdT_m3YwPFUK1s1JlK9XOSrVYySVflsZz3QX_VPBfQwa-LYBNzsZmtL1r0zOnuZESd3N_3nNtCOHpWwrNGEP2CPSCnHk</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Li, Bing</creator><creator>Xiong, Weihua</creator><creator>Hu, Weiming</creator><creator>Funt, Brian</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140301</creationdate><title>Evaluating Combinational Illumination Estimation Methods on Real-World Images</title><author>Li, Bing ; Xiong, Weihua ; Hu, Weiming ; Funt, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-4db9ad215e925e60540ca24d1283afd80b2bcc2b8f128c58c78bfad4da7f9a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>automatic white balance</topic><topic>Color</topic><topic>color constancy</topic><topic>Colorimetry - methods</topic><topic>committee-based</topic><topic>Cues</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Illumination</topic><topic>Illumination estimation</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Indoor</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Lighting</topic><topic>Lighting - methods</topic><topic>Methods</topic><topic>Outdoor</topic><topic>Regression</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Support vector machines</topic><topic>Telecommunications and information theory</topic><topic>Three dimensional</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Xiong, Weihua</creatorcontrib><creatorcontrib>Hu, Weiming</creatorcontrib><creatorcontrib>Funt, Brian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Bing</au><au>Xiong, Weihua</au><au>Hu, Weiming</au><au>Funt, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Combinational Illumination Estimation Methods on Real-World Images</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>23</volume><issue>3</issue><spage>1194</spage><epage>1209</epage><pages>1194-1209</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Illumination estimation is an important component of color constancy and automatic white balancing. A number of methods of combining illumination estimates obtained from multiple subordinate illumination estimation methods now appear in the literature. These combinational methods aim to provide better illumination estimates by fusing the information embedded in the subordinate solutions. The existing combinational methods are surveyed and analyzed here with the goals of determining: 1) the effectiveness of fusing illumination estimates from multiple subordinate methods; 2) the best method of combination; 3) the underlying factors that affect the performance of a combinational method; and 4) the effectiveness of combination for illumination estimation in multiple-illuminant scenes. The various combinational methods are categorized in terms of whether or not they require supervised training and whether or not they rely on high-level scene content cues (e.g., indoor versus outdoor). Extensive tests and enhanced analyzes using three data sets of real-world images are conducted. For consistency in testing, the images were labeled according to their high-level features (3D stages, indoor/outdoor) and this label data is made available on-line. The tests reveal that the trained combinational methods (direct combination by support vector regression in particular) clearly outperform both the non-combinational methods and those combinational methods based on scene content cues.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23974624</pmid><doi>10.1109/TIP.2013.2277943</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2014-03, Vol.23 (3), p.1194-1209
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2013_2277943
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
automatic white balance
Color
color constancy
Colorimetry - methods
committee-based
Cues
Estimates
Estimation
Exact sciences and technology
Geometry
Illumination
Illumination estimation
Image color analysis
Image edge detection
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Imaging, Three-Dimensional - methods
Indoor
Information theory
Information, signal and communications theory
Lighting
Lighting - methods
Methods
Outdoor
Regression
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Support vector machines
Telecommunications and information theory
Three dimensional
Training
title Evaluating Combinational Illumination Estimation Methods on Real-World Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Combinational%20Illumination%20Estimation%20Methods%20on%20Real-World%20Images&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Li,%20Bing&rft.date=2014-03-01&rft.volume=23&rft.issue=3&rft.spage=1194&rft.epage=1209&rft.pages=1194-1209&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2277943&rft_dat=%3Cproquest_RIE%3E1520975988%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504636760&rft_id=info:pmid/23974624&rft_ieee_id=6583331&rfr_iscdi=true