Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression
Image super-resolution (SR) reconstruction is essentially an ill-posed problem, so it is important to design an effective prior. For this purpose, we propose a novel image SR method by learning both non-local and local regularization priors from a given low-resolution image. The non-local prior take...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2012-11, Vol.21 (11), p.4544-4556 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4556 |
---|---|
container_issue | 11 |
container_start_page | 4544 |
container_title | IEEE transactions on image processing |
container_volume | 21 |
creator | Zhang, Kaibing Gao, Xinbo Tao, Dacheng Li, Xuelong |
description | Image super-resolution (SR) reconstruction is essentially an ill-posed problem, so it is important to design an effective prior. For this purpose, we propose a novel image SR method by learning both non-local and local regularization priors from a given low-resolution image. The non-local prior takes advantage of the redundancy of similar patches in natural images, while the local prior assumes that a target pixel can be estimated by a weighted average of its neighbors. Based on the above considerations, we utilize the non-local means filter to learn a non-local prior and the steering kernel regression to learn a local prior. By assembling the two complementary regularization terms, we propose a maximum a posteriori probability framework for SR recovery. Thorough experimental results suggest that the proposed SR method can reconstruct higher quality results both quantitatively and perceptually. |
doi_str_mv | 10.1109/TIP.2012.2208977 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2012_2208977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6241428</ieee_id><sourcerecordid>1113981885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-1d1b7ea81dcbbf5fe6ca475ade6103e72543b36e54f427fd504bc6182369dcfb3</originalsourceid><addsrcrecordid>eNpFkMtLw0AQhxdRbK3eBUH2InhJ3dlHHkcpPor11VY8hs1mUiN51N3k4H9vamM9zcB8v9_AR8gpsDEAi66W05cxZ8DHnLMwCoI9MoRIgseY5PvdzlTgBSCjATly7pMxkAr8QzLgPOSRZGJIXhd5tSqQTku9Qrpo12i9Obq6aJu8ruh73nzQp7ryZrXRBX1EXTmqq5QuGkTbRekD2goLOseVRee6zDE5yHTh8KSfI_J2e7Oc3Huz57vp5HrmGSGjxoMUkgB1CKlJkkxl6BstA6VT9IEJDLiSIhE-KplJHmSpYjIxPoRc-FFqskSMyOW2d23rrxZdE5e5M1gUusK6dTEAiCiEMFQdyraosbVzFrN4bfNS2-8YWLwRGXci443IuBfZRc779jYpMd0F_sx1wEUPaNepyayuTO7-OV9JyX5_n225HBF3Z59LkDwUP-6Vg5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113981885</pqid></control><display><type>article</type><title>Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Kaibing ; Gao, Xinbo ; Tao, Dacheng ; Li, Xuelong</creator><creatorcontrib>Zhang, Kaibing ; Gao, Xinbo ; Tao, Dacheng ; Li, Xuelong</creatorcontrib><description>Image super-resolution (SR) reconstruction is essentially an ill-posed problem, so it is important to design an effective prior. For this purpose, we propose a novel image SR method by learning both non-local and local regularization priors from a given low-resolution image. The non-local prior takes advantage of the redundancy of similar patches in natural images, while the local prior assumes that a target pixel can be estimated by a weighted average of its neighbors. Based on the above considerations, we utilize the non-local means filter to learn a non-local prior and the steering kernel regression to learn a local prior. By assembling the two complementary regularization terms, we propose a maximum a posteriori probability framework for SR recovery. Thorough experimental results suggest that the proposed SR method can reconstruct higher quality results both quantitatively and perceptually.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2012.2208977</identifier><identifier>PMID: 22829403</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Animals ; Applied sciences ; Artificial Intelligence ; Databases, Factual ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Image resolution ; Image super-resolution ; Information, signal and communications theory ; Interpolation ; Kernel ; non-local means ; Pattern Recognition, Automated - methods ; PSNR ; Regression Analysis ; regularization prior ; Reproducibility of Results ; self-similarity ; Signal and communications theory ; Signal processing ; Signal, noise ; steering kernel regression ; Strontium ; Telecommunications and information theory ; Vectors</subject><ispartof>IEEE transactions on image processing, 2012-11, Vol.21 (11), p.4544-4556</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-1d1b7ea81dcbbf5fe6ca475ade6103e72543b36e54f427fd504bc6182369dcfb3</citedby><cites>FETCH-LOGICAL-c349t-1d1b7ea81dcbbf5fe6ca475ade6103e72543b36e54f427fd504bc6182369dcfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6241428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6241428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26544085$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22829403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Kaibing</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><creatorcontrib>Li, Xuelong</creatorcontrib><title>Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Image super-resolution (SR) reconstruction is essentially an ill-posed problem, so it is important to design an effective prior. For this purpose, we propose a novel image SR method by learning both non-local and local regularization priors from a given low-resolution image. The non-local prior takes advantage of the redundancy of similar patches in natural images, while the local prior assumes that a target pixel can be estimated by a weighted average of its neighbors. Based on the above considerations, we utilize the non-local means filter to learn a non-local prior and the steering kernel regression to learn a local prior. By assembling the two complementary regularization terms, we propose a maximum a posteriori probability framework for SR recovery. Thorough experimental results suggest that the proposed SR method can reconstruct higher quality results both quantitatively and perceptually.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Databases, Factual</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Image super-resolution</subject><subject>Information, signal and communications theory</subject><subject>Interpolation</subject><subject>Kernel</subject><subject>non-local means</subject><subject>Pattern Recognition, Automated - methods</subject><subject>PSNR</subject><subject>Regression Analysis</subject><subject>regularization prior</subject><subject>Reproducibility of Results</subject><subject>self-similarity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>steering kernel regression</subject><subject>Strontium</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkMtLw0AQhxdRbK3eBUH2InhJ3dlHHkcpPor11VY8hs1mUiN51N3k4H9vamM9zcB8v9_AR8gpsDEAi66W05cxZ8DHnLMwCoI9MoRIgseY5PvdzlTgBSCjATly7pMxkAr8QzLgPOSRZGJIXhd5tSqQTku9Qrpo12i9Obq6aJu8ruh73nzQp7ryZrXRBX1EXTmqq5QuGkTbRekD2goLOseVRee6zDE5yHTh8KSfI_J2e7Oc3Huz57vp5HrmGSGjxoMUkgB1CKlJkkxl6BstA6VT9IEJDLiSIhE-KplJHmSpYjIxPoRc-FFqskSMyOW2d23rrxZdE5e5M1gUusK6dTEAiCiEMFQdyraosbVzFrN4bfNS2-8YWLwRGXci443IuBfZRc779jYpMd0F_sx1wEUPaNepyayuTO7-OV9JyX5_n225HBF3Z59LkDwUP-6Vg5c</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Zhang, Kaibing</creator><creator>Gao, Xinbo</creator><creator>Tao, Dacheng</creator><creator>Li, Xuelong</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20121101</creationdate><title>Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression</title><author>Zhang, Kaibing ; Gao, Xinbo ; Tao, Dacheng ; Li, Xuelong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-1d1b7ea81dcbbf5fe6ca475ade6103e72543b36e54f427fd504bc6182369dcfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Databases, Factual</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Image super-resolution</topic><topic>Information, signal and communications theory</topic><topic>Interpolation</topic><topic>Kernel</topic><topic>non-local means</topic><topic>Pattern Recognition, Automated - methods</topic><topic>PSNR</topic><topic>Regression Analysis</topic><topic>regularization prior</topic><topic>Reproducibility of Results</topic><topic>self-similarity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>steering kernel regression</topic><topic>Strontium</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kaibing</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><creatorcontrib>Li, Xuelong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Kaibing</au><au>Gao, Xinbo</au><au>Tao, Dacheng</au><au>Li, Xuelong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>21</volume><issue>11</issue><spage>4544</spage><epage>4556</epage><pages>4544-4556</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Image super-resolution (SR) reconstruction is essentially an ill-posed problem, so it is important to design an effective prior. For this purpose, we propose a novel image SR method by learning both non-local and local regularization priors from a given low-resolution image. The non-local prior takes advantage of the redundancy of similar patches in natural images, while the local prior assumes that a target pixel can be estimated by a weighted average of its neighbors. Based on the above considerations, we utilize the non-local means filter to learn a non-local prior and the steering kernel regression to learn a local prior. By assembling the two complementary regularization terms, we propose a maximum a posteriori probability framework for SR recovery. Thorough experimental results suggest that the proposed SR method can reconstruct higher quality results both quantitatively and perceptually.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22829403</pmid><doi>10.1109/TIP.2012.2208977</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2012-11, Vol.21 (11), p.4544-4556 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2012_2208977 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Animals Applied sciences Artificial Intelligence Databases, Factual Detection, estimation, filtering, equalization, prediction Exact sciences and technology Humans Image processing Image Processing, Computer-Assisted - methods Image reconstruction Image resolution Image super-resolution Information, signal and communications theory Interpolation Kernel non-local means Pattern Recognition, Automated - methods PSNR Regression Analysis regularization prior Reproducibility of Results self-similarity Signal and communications theory Signal processing Signal, noise steering kernel regression Strontium Telecommunications and information theory Vectors |
title | Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Image%20Super-Resolution%20With%20Non-Local%20Means%20and%20Steering%20Kernel%20Regression&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhang,%20Kaibing&rft.date=2012-11-01&rft.volume=21&rft.issue=11&rft.spage=4544&rft.epage=4556&rft.pages=4544-4556&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2012.2208977&rft_dat=%3Cproquest_RIE%3E1113981885%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113981885&rft_id=info:pmid/22829403&rft_ieee_id=6241428&rfr_iscdi=true |