Eigendecomposition of Images Correlated on S^, S^, and SO(3) Using Spectral Theory
Eigendecomposition represents one computationally efficient approach for dealing with object detection and pose estimation, as well as other vision-based problems, and has been applied to sets of correlated images for this purpose. The major drawback in using eigendecomposition is the off line compu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2009-11, Vol.18 (11), p.2562-2571 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2571 |
---|---|
container_issue | 11 |
container_start_page | 2562 |
container_title | IEEE transactions on image processing |
container_volume | 18 |
creator | Hoover, R.C. Maciejewski, A.A. Roberts, R.G. |
description | Eigendecomposition represents one computationally efficient approach for dealing with object detection and pose estimation, as well as other vision-based problems, and has been applied to sets of correlated images for this purpose. The major drawback in using eigendecomposition is the off line computational expense incurred by computing the desired subspace. This off line expense increases drastically as the number of correlated images becomes large (which is the case when doing fully general 3-D pose estimation). Previous work has shown that for data correlated on S 1 , Fourier analysis can help reduce the computational burden of this off line expense. This paper presents a method for extending this technique to data correlated on S 2 as well as SO (3) by sampling the sphere appropriately. An algorithm is then developed for reducing the off line computational burden associated with computing the eigenspace by exploiting the spectral information of this spherical data set using spherical harmonics and Wigner- D functions. Experimental results are presented to compare the proposed algorithm to the true eigendecomposition, as well as assess the computational savings. |
doi_str_mv | 10.1109/TIP.2009.2026622 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2009_2026622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5153357</ieee_id><sourcerecordid>10_1109_TIP_2009_2026622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2202-f045410ff1388a109c83eca966fc8c12ad93e829eb75da086a012080b9b6db7a3</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGI4jeTbzsUROLM_vV7tEQVBISjMDVZrudYg20ZJcL_54ixMN8ZDLvm5mHsXuEISLYl8XkcygAbJeEMUJcsD5ahQmAEpddDzpNUlS2x25i_AVApdFcsx5anSo0us--xvWKmpJ8u9m2sd7VbcPbik82bkWRj9oQaO12VPJuPv9-_gvXlHw-e5RPfBnrZsXnW_K74NZ88UNt2N-yq8qtI92d64At38aL0Ucynb1PRq_TxIvu3KQCpRVCVaHMMtd94zNJ3lljKp95FK60kjJhqUh16SAzDlBABoUtTFmkTg4YnHx9aGMMVOXbUG9c2OcI-RFP3uHJj3jyM55O8nCS1ET0v65RS6lTeQC1WF1C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Eigendecomposition of Images Correlated on S^, S^, and SO(3) Using Spectral Theory</title><source>IEEE Xplore</source><creator>Hoover, R.C. ; Maciejewski, A.A. ; Roberts, R.G.</creator><creatorcontrib>Hoover, R.C. ; Maciejewski, A.A. ; Roberts, R.G.</creatorcontrib><description>Eigendecomposition represents one computationally efficient approach for dealing with object detection and pose estimation, as well as other vision-based problems, and has been applied to sets of correlated images for this purpose. The major drawback in using eigendecomposition is the off line computational expense incurred by computing the desired subspace. This off line expense increases drastically as the number of correlated images becomes large (which is the case when doing fully general 3-D pose estimation). Previous work has shown that for data correlated on S 1 , Fourier analysis can help reduce the computational burden of this off line expense. This paper presents a method for extending this technique to data correlated on S 2 as well as SO (3) by sampling the sphere appropriately. An algorithm is then developed for reducing the off line computational burden associated with computing the eigenspace by exploiting the spectral information of this spherical data set using spherical harmonics and Wigner- D functions. Experimental results are presented to compare the proposed algorithm to the true eigendecomposition, as well as assess the computational savings.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2009.2026622</identifier><identifier>PMID: 19574165</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer vision ; correlation ; Data compression ; eigenspace ; Image sampling ; Object detection ; Object recognition ; pose estimation ; Principal component analysis ; Robotics and automation ; Sampling methods ; Singular value decomposition ; spherical harmonics ; Wigner-D functions</subject><ispartof>IEEE transactions on image processing, 2009-11, Vol.18 (11), p.2562-2571</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2202-f045410ff1388a109c83eca966fc8c12ad93e829eb75da086a012080b9b6db7a3</citedby><cites>FETCH-LOGICAL-c2202-f045410ff1388a109c83eca966fc8c12ad93e829eb75da086a012080b9b6db7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5153357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5153357$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoover, R.C.</creatorcontrib><creatorcontrib>Maciejewski, A.A.</creatorcontrib><creatorcontrib>Roberts, R.G.</creatorcontrib><title>Eigendecomposition of Images Correlated on S^, S^, and SO(3) Using Spectral Theory</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Eigendecomposition represents one computationally efficient approach for dealing with object detection and pose estimation, as well as other vision-based problems, and has been applied to sets of correlated images for this purpose. The major drawback in using eigendecomposition is the off line computational expense incurred by computing the desired subspace. This off line expense increases drastically as the number of correlated images becomes large (which is the case when doing fully general 3-D pose estimation). Previous work has shown that for data correlated on S 1 , Fourier analysis can help reduce the computational burden of this off line expense. This paper presents a method for extending this technique to data correlated on S 2 as well as SO (3) by sampling the sphere appropriately. An algorithm is then developed for reducing the off line computational burden associated with computing the eigenspace by exploiting the spectral information of this spherical data set using spherical harmonics and Wigner- D functions. Experimental results are presented to compare the proposed algorithm to the true eigendecomposition, as well as assess the computational savings.</description><subject>Application software</subject><subject>Computer vision</subject><subject>correlation</subject><subject>Data compression</subject><subject>eigenspace</subject><subject>Image sampling</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>pose estimation</subject><subject>Principal component analysis</subject><subject>Robotics and automation</subject><subject>Sampling methods</subject><subject>Singular value decomposition</subject><subject>spherical harmonics</subject><subject>Wigner-D functions</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGI4jeTbzsUROLM_vV7tEQVBISjMDVZrudYg20ZJcL_54ixMN8ZDLvm5mHsXuEISLYl8XkcygAbJeEMUJcsD5ahQmAEpddDzpNUlS2x25i_AVApdFcsx5anSo0us--xvWKmpJ8u9m2sd7VbcPbik82bkWRj9oQaO12VPJuPv9-_gvXlHw-e5RPfBnrZsXnW_K74NZ88UNt2N-yq8qtI92d64At38aL0Ucynb1PRq_TxIvu3KQCpRVCVaHMMtd94zNJ3lljKp95FK60kjJhqUh16SAzDlBABoUtTFmkTg4YnHx9aGMMVOXbUG9c2OcI-RFP3uHJj3jyM55O8nCS1ET0v65RS6lTeQC1WF1C</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Hoover, R.C.</creator><creator>Maciejewski, A.A.</creator><creator>Roberts, R.G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200911</creationdate><title>Eigendecomposition of Images Correlated on S^, S^, and SO(3) Using Spectral Theory</title><author>Hoover, R.C. ; Maciejewski, A.A. ; Roberts, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2202-f045410ff1388a109c83eca966fc8c12ad93e829eb75da086a012080b9b6db7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application software</topic><topic>Computer vision</topic><topic>correlation</topic><topic>Data compression</topic><topic>eigenspace</topic><topic>Image sampling</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>pose estimation</topic><topic>Principal component analysis</topic><topic>Robotics and automation</topic><topic>Sampling methods</topic><topic>Singular value decomposition</topic><topic>spherical harmonics</topic><topic>Wigner-D functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoover, R.C.</creatorcontrib><creatorcontrib>Maciejewski, A.A.</creatorcontrib><creatorcontrib>Roberts, R.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoover, R.C.</au><au>Maciejewski, A.A.</au><au>Roberts, R.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigendecomposition of Images Correlated on S^, S^, and SO(3) Using Spectral Theory</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2009-11</date><risdate>2009</risdate><volume>18</volume><issue>11</issue><spage>2562</spage><epage>2571</epage><pages>2562-2571</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Eigendecomposition represents one computationally efficient approach for dealing with object detection and pose estimation, as well as other vision-based problems, and has been applied to sets of correlated images for this purpose. The major drawback in using eigendecomposition is the off line computational expense incurred by computing the desired subspace. This off line expense increases drastically as the number of correlated images becomes large (which is the case when doing fully general 3-D pose estimation). Previous work has shown that for data correlated on S 1 , Fourier analysis can help reduce the computational burden of this off line expense. This paper presents a method for extending this technique to data correlated on S 2 as well as SO (3) by sampling the sphere appropriately. An algorithm is then developed for reducing the off line computational burden associated with computing the eigenspace by exploiting the spectral information of this spherical data set using spherical harmonics and Wigner- D functions. Experimental results are presented to compare the proposed algorithm to the true eigendecomposition, as well as assess the computational savings.</abstract><pub>IEEE</pub><pmid>19574165</pmid><doi>10.1109/TIP.2009.2026622</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2009-11, Vol.18 (11), p.2562-2571 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2009_2026622 |
source | IEEE Xplore |
subjects | Application software Computer vision correlation Data compression eigenspace Image sampling Object detection Object recognition pose estimation Principal component analysis Robotics and automation Sampling methods Singular value decomposition spherical harmonics Wigner-D functions |
title | Eigendecomposition of Images Correlated on S^, S^, and SO(3) Using Spectral Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigendecomposition%20of%20Images%20Correlated%20on%20S%5E,%20S%5E,%20and%20SO(3)%20Using%20Spectral%20Theory&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Hoover,%20R.C.&rft.date=2009-11&rft.volume=18&rft.issue=11&rft.spage=2562&rft.epage=2571&rft.pages=2562-2571&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2009.2026622&rft_dat=%3Ccrossref_RIE%3E10_1109_TIP_2009_2026622%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19574165&rft_ieee_id=5153357&rfr_iscdi=true |