Eigendecomposition of Images Correlated on S^, S^, and SO(3) Using Spectral Theory

Eigendecomposition represents one computationally efficient approach for dealing with object detection and pose estimation, as well as other vision-based problems, and has been applied to sets of correlated images for this purpose. The major drawback in using eigendecomposition is the off line compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2009-11, Vol.18 (11), p.2562-2571
Hauptverfasser: Hoover, R.C., Maciejewski, A.A., Roberts, R.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2571
container_issue 11
container_start_page 2562
container_title IEEE transactions on image processing
container_volume 18
creator Hoover, R.C.
Maciejewski, A.A.
Roberts, R.G.
description Eigendecomposition represents one computationally efficient approach for dealing with object detection and pose estimation, as well as other vision-based problems, and has been applied to sets of correlated images for this purpose. The major drawback in using eigendecomposition is the off line computational expense incurred by computing the desired subspace. This off line expense increases drastically as the number of correlated images becomes large (which is the case when doing fully general 3-D pose estimation). Previous work has shown that for data correlated on S 1 , Fourier analysis can help reduce the computational burden of this off line expense. This paper presents a method for extending this technique to data correlated on S 2 as well as SO (3) by sampling the sphere appropriately. An algorithm is then developed for reducing the off line computational burden associated with computing the eigenspace by exploiting the spectral information of this spherical data set using spherical harmonics and Wigner- D functions. Experimental results are presented to compare the proposed algorithm to the true eigendecomposition, as well as assess the computational savings.
doi_str_mv 10.1109/TIP.2009.2026622
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2009_2026622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5153357</ieee_id><sourcerecordid>10_1109_TIP_2009_2026622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2202-f045410ff1388a109c83eca966fc8c12ad93e829eb75da086a012080b9b6db7a3</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGI4jeTbzsUROLM_vV7tEQVBISjMDVZrudYg20ZJcL_54ixMN8ZDLvm5mHsXuEISLYl8XkcygAbJeEMUJcsD5ahQmAEpddDzpNUlS2x25i_AVApdFcsx5anSo0us--xvWKmpJ8u9m2sd7VbcPbik82bkWRj9oQaO12VPJuPv9-_gvXlHw-e5RPfBnrZsXnW_K74NZ88UNt2N-yq8qtI92d64At38aL0Ucynb1PRq_TxIvu3KQCpRVCVaHMMtd94zNJ3lljKp95FK60kjJhqUh16SAzDlBABoUtTFmkTg4YnHx9aGMMVOXbUG9c2OcI-RFP3uHJj3jyM55O8nCS1ET0v65RS6lTeQC1WF1C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Eigendecomposition of Images Correlated on S^, S^, and SO(3) Using Spectral Theory</title><source>IEEE Xplore</source><creator>Hoover, R.C. ; Maciejewski, A.A. ; Roberts, R.G.</creator><creatorcontrib>Hoover, R.C. ; Maciejewski, A.A. ; Roberts, R.G.</creatorcontrib><description>Eigendecomposition represents one computationally efficient approach for dealing with object detection and pose estimation, as well as other vision-based problems, and has been applied to sets of correlated images for this purpose. The major drawback in using eigendecomposition is the off line computational expense incurred by computing the desired subspace. This off line expense increases drastically as the number of correlated images becomes large (which is the case when doing fully general 3-D pose estimation). Previous work has shown that for data correlated on S 1 , Fourier analysis can help reduce the computational burden of this off line expense. This paper presents a method for extending this technique to data correlated on S 2 as well as SO (3) by sampling the sphere appropriately. An algorithm is then developed for reducing the off line computational burden associated with computing the eigenspace by exploiting the spectral information of this spherical data set using spherical harmonics and Wigner- D functions. Experimental results are presented to compare the proposed algorithm to the true eigendecomposition, as well as assess the computational savings.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2009.2026622</identifier><identifier>PMID: 19574165</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer vision ; correlation ; Data compression ; eigenspace ; Image sampling ; Object detection ; Object recognition ; pose estimation ; Principal component analysis ; Robotics and automation ; Sampling methods ; Singular value decomposition ; spherical harmonics ; Wigner-D functions</subject><ispartof>IEEE transactions on image processing, 2009-11, Vol.18 (11), p.2562-2571</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2202-f045410ff1388a109c83eca966fc8c12ad93e829eb75da086a012080b9b6db7a3</citedby><cites>FETCH-LOGICAL-c2202-f045410ff1388a109c83eca966fc8c12ad93e829eb75da086a012080b9b6db7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5153357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5153357$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoover, R.C.</creatorcontrib><creatorcontrib>Maciejewski, A.A.</creatorcontrib><creatorcontrib>Roberts, R.G.</creatorcontrib><title>Eigendecomposition of Images Correlated on S^, S^, and SO(3) Using Spectral Theory</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Eigendecomposition represents one computationally efficient approach for dealing with object detection and pose estimation, as well as other vision-based problems, and has been applied to sets of correlated images for this purpose. The major drawback in using eigendecomposition is the off line computational expense incurred by computing the desired subspace. This off line expense increases drastically as the number of correlated images becomes large (which is the case when doing fully general 3-D pose estimation). Previous work has shown that for data correlated on S 1 , Fourier analysis can help reduce the computational burden of this off line expense. This paper presents a method for extending this technique to data correlated on S 2 as well as SO (3) by sampling the sphere appropriately. An algorithm is then developed for reducing the off line computational burden associated with computing the eigenspace by exploiting the spectral information of this spherical data set using spherical harmonics and Wigner- D functions. Experimental results are presented to compare the proposed algorithm to the true eigendecomposition, as well as assess the computational savings.</description><subject>Application software</subject><subject>Computer vision</subject><subject>correlation</subject><subject>Data compression</subject><subject>eigenspace</subject><subject>Image sampling</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>pose estimation</subject><subject>Principal component analysis</subject><subject>Robotics and automation</subject><subject>Sampling methods</subject><subject>Singular value decomposition</subject><subject>spherical harmonics</subject><subject>Wigner-D functions</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGI4jeTbzsUROLM_vV7tEQVBISjMDVZrudYg20ZJcL_54ixMN8ZDLvm5mHsXuEISLYl8XkcygAbJeEMUJcsD5ahQmAEpddDzpNUlS2x25i_AVApdFcsx5anSo0us--xvWKmpJ8u9m2sd7VbcPbik82bkWRj9oQaO12VPJuPv9-_gvXlHw-e5RPfBnrZsXnW_K74NZ88UNt2N-yq8qtI92d64At38aL0Ucynb1PRq_TxIvu3KQCpRVCVaHMMtd94zNJ3lljKp95FK60kjJhqUh16SAzDlBABoUtTFmkTg4YnHx9aGMMVOXbUG9c2OcI-RFP3uHJj3jyM55O8nCS1ET0v65RS6lTeQC1WF1C</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Hoover, R.C.</creator><creator>Maciejewski, A.A.</creator><creator>Roberts, R.G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200911</creationdate><title>Eigendecomposition of Images Correlated on S^, S^, and SO(3) Using Spectral Theory</title><author>Hoover, R.C. ; Maciejewski, A.A. ; Roberts, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2202-f045410ff1388a109c83eca966fc8c12ad93e829eb75da086a012080b9b6db7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application software</topic><topic>Computer vision</topic><topic>correlation</topic><topic>Data compression</topic><topic>eigenspace</topic><topic>Image sampling</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>pose estimation</topic><topic>Principal component analysis</topic><topic>Robotics and automation</topic><topic>Sampling methods</topic><topic>Singular value decomposition</topic><topic>spherical harmonics</topic><topic>Wigner-D functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoover, R.C.</creatorcontrib><creatorcontrib>Maciejewski, A.A.</creatorcontrib><creatorcontrib>Roberts, R.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoover, R.C.</au><au>Maciejewski, A.A.</au><au>Roberts, R.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigendecomposition of Images Correlated on S^, S^, and SO(3) Using Spectral Theory</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2009-11</date><risdate>2009</risdate><volume>18</volume><issue>11</issue><spage>2562</spage><epage>2571</epage><pages>2562-2571</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Eigendecomposition represents one computationally efficient approach for dealing with object detection and pose estimation, as well as other vision-based problems, and has been applied to sets of correlated images for this purpose. The major drawback in using eigendecomposition is the off line computational expense incurred by computing the desired subspace. This off line expense increases drastically as the number of correlated images becomes large (which is the case when doing fully general 3-D pose estimation). Previous work has shown that for data correlated on S 1 , Fourier analysis can help reduce the computational burden of this off line expense. This paper presents a method for extending this technique to data correlated on S 2 as well as SO (3) by sampling the sphere appropriately. An algorithm is then developed for reducing the off line computational burden associated with computing the eigenspace by exploiting the spectral information of this spherical data set using spherical harmonics and Wigner- D functions. Experimental results are presented to compare the proposed algorithm to the true eigendecomposition, as well as assess the computational savings.</abstract><pub>IEEE</pub><pmid>19574165</pmid><doi>10.1109/TIP.2009.2026622</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2009-11, Vol.18 (11), p.2562-2571
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2009_2026622
source IEEE Xplore
subjects Application software
Computer vision
correlation
Data compression
eigenspace
Image sampling
Object detection
Object recognition
pose estimation
Principal component analysis
Robotics and automation
Sampling methods
Singular value decomposition
spherical harmonics
Wigner-D functions
title Eigendecomposition of Images Correlated on S^, S^, and SO(3) Using Spectral Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigendecomposition%20of%20Images%20Correlated%20on%20S%5E,%20S%5E,%20and%20SO(3)%20Using%20Spectral%20Theory&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Hoover,%20R.C.&rft.date=2009-11&rft.volume=18&rft.issue=11&rft.spage=2562&rft.epage=2571&rft.pages=2562-2571&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2009.2026622&rft_dat=%3Ccrossref_RIE%3E10_1109_TIP_2009_2026622%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19574165&rft_ieee_id=5153357&rfr_iscdi=true