Efficient computation of the Hutchinson metric between digitized images
The Hutchinson metric is a natural measure of the discrepancy between two images for use in fractal image processing. An efficient solution to the problem of computing the Hutchinson metric between two arbitrary digitized images is considered. The technique proposed here, based on the shape of the o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2004-12, Vol.13 (12), p.1581-1588 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1588 |
---|---|
container_issue | 12 |
container_start_page | 1581 |
container_title | IEEE transactions on image processing |
container_volume | 13 |
creator | Drakopoulos, V. Nikolaou, N.P. |
description | The Hutchinson metric is a natural measure of the discrepancy between two images for use in fractal image processing. An efficient solution to the problem of computing the Hutchinson metric between two arbitrary digitized images is considered. The technique proposed here, based on the shape of the objects as projected on the digitized screen, can be used as an effective way to establish the error between the original and the, possibly compressed, decoded image. To test the performance of our method, we apply it to compare pairs of fractal objects, as well as to compare real-world images with the corresponding reconstructed ones. |
doi_str_mv | 10.1109/TIP.2004.837550 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2004_837550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1355938</ieee_id><sourcerecordid>2426199761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-d63542bf38cec1a57abef70ae826f6309ffb849dfdd0fb57812965834b01db6b3</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4NYbK2ePQgyCNrTbJNJXn4cpdS2UGgP9RySzEubsjOzTjIU_evNsgsLHvSU8PLJl_feh5APjK4Yo-b84eZ-1VEqVporAPqKnDAjWFsr3et6p6BaxYQ5Jm9zfqaUCWDyDTlmAAoY8BNydRljCgnH0oRp2CzFlTSNzRSb8oTN9VLCUxpzrQxY5hQaj-UFcWz69JhK-o19kwb3iPkdOYpunfH9_jwlP75fPlxct7d3VzcX327bIDgvbS85iM5HrgMG5kA5j1FRh7qTUXJqYvRamD72PY0elGadkaC58JT1Xnp-Ss52uZt5-rlgLnZIOeB67UaclmwNZbLmUFPJr_8kZV0MKCX-C3a1NykUr-Dnv8DnaZnHOq7VmgM3mm3TzndQmKecZ4x2M9cVzb8so3brzFZnduvM7pzVH5_2sYsfsD_we0kV-LIHXA5uHWc3hpQPnKz9AZWV-7jjEiIenjmA4Zr_ASbqpno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883539814</pqid></control><display><type>article</type><title>Efficient computation of the Hutchinson metric between digitized images</title><source>IEEE Electronic Library (IEL)</source><creator>Drakopoulos, V. ; Nikolaou, N.P.</creator><creatorcontrib>Drakopoulos, V. ; Nikolaou, N.P.</creatorcontrib><description>The Hutchinson metric is a natural measure of the discrepancy between two images for use in fractal image processing. An efficient solution to the problem of computing the Hutchinson metric between two arbitrary digitized images is considered. The technique proposed here, based on the shape of the objects as projected on the digitized screen, can be used as an effective way to establish the error between the original and the, possibly compressed, decoded image. To test the performance of our method, we apply it to compare pairs of fractal objects, as well as to compare real-world images with the corresponding reconstructed ones.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2004.837550</identifier><identifier>PMID: 15575153</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Cluster Analysis ; Color ; Compressed ; Computational efficiency ; Computational geometry ; Computer Graphics ; Computer Simulation ; Decoding ; Digitization ; Exact sciences and technology ; Fractal analysis ; Fractals ; Gray-scale ; Hutchinson metric ; Image coding ; image comparison ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Imaging, Three-Dimensional - methods ; Informatics ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Mathematical models ; Neural networks ; Numerical Analysis, Computer-Assisted ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Shape ; Signal and communications theory ; Signal processing ; Signal Processing, Computer-Assisted ; Signal representation. Spectral analysis ; Signal, noise ; Subtraction Technique ; Telecommunications and information theory ; Testing</subject><ispartof>IEEE transactions on image processing, 2004-12, Vol.13 (12), p.1581-1588</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-d63542bf38cec1a57abef70ae826f6309ffb849dfdd0fb57812965834b01db6b3</citedby><cites>FETCH-LOGICAL-c433t-d63542bf38cec1a57abef70ae826f6309ffb849dfdd0fb57812965834b01db6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1355938$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1355938$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16266506$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15575153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drakopoulos, V.</creatorcontrib><creatorcontrib>Nikolaou, N.P.</creatorcontrib><title>Efficient computation of the Hutchinson metric between digitized images</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The Hutchinson metric is a natural measure of the discrepancy between two images for use in fractal image processing. An efficient solution to the problem of computing the Hutchinson metric between two arbitrary digitized images is considered. The technique proposed here, based on the shape of the objects as projected on the digitized screen, can be used as an effective way to establish the error between the original and the, possibly compressed, decoded image. To test the performance of our method, we apply it to compare pairs of fractal objects, as well as to compare real-world images with the corresponding reconstructed ones.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Cluster Analysis</subject><subject>Color</subject><subject>Compressed</subject><subject>Computational efficiency</subject><subject>Computational geometry</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Decoding</subject><subject>Digitization</subject><subject>Exact sciences and technology</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Gray-scale</subject><subject>Hutchinson metric</subject><subject>Image coding</subject><subject>image comparison</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Informatics</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Shape</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Subtraction Technique</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEUx4NYbK2ePQgyCNrTbJNJXn4cpdS2UGgP9RySzEubsjOzTjIU_evNsgsLHvSU8PLJl_feh5APjK4Yo-b84eZ-1VEqVporAPqKnDAjWFsr3et6p6BaxYQ5Jm9zfqaUCWDyDTlmAAoY8BNydRljCgnH0oRp2CzFlTSNzRSb8oTN9VLCUxpzrQxY5hQaj-UFcWz69JhK-o19kwb3iPkdOYpunfH9_jwlP75fPlxct7d3VzcX327bIDgvbS85iM5HrgMG5kA5j1FRh7qTUXJqYvRamD72PY0elGadkaC58JT1Xnp-Ss52uZt5-rlgLnZIOeB67UaclmwNZbLmUFPJr_8kZV0MKCX-C3a1NykUr-Dnv8DnaZnHOq7VmgM3mm3TzndQmKecZ4x2M9cVzb8so3brzFZnduvM7pzVH5_2sYsfsD_we0kV-LIHXA5uHWc3hpQPnKz9AZWV-7jjEiIenjmA4Zr_ASbqpno</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Drakopoulos, V.</creator><creator>Nikolaou, N.P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20041201</creationdate><title>Efficient computation of the Hutchinson metric between digitized images</title><author>Drakopoulos, V. ; Nikolaou, N.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-d63542bf38cec1a57abef70ae826f6309ffb849dfdd0fb57812965834b01db6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Cluster Analysis</topic><topic>Color</topic><topic>Compressed</topic><topic>Computational efficiency</topic><topic>Computational geometry</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Decoding</topic><topic>Digitization</topic><topic>Exact sciences and technology</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Gray-scale</topic><topic>Hutchinson metric</topic><topic>Image coding</topic><topic>image comparison</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Informatics</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Shape</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Subtraction Technique</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drakopoulos, V.</creatorcontrib><creatorcontrib>Nikolaou, N.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Drakopoulos, V.</au><au>Nikolaou, N.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient computation of the Hutchinson metric between digitized images</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>13</volume><issue>12</issue><spage>1581</spage><epage>1588</epage><pages>1581-1588</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The Hutchinson metric is a natural measure of the discrepancy between two images for use in fractal image processing. An efficient solution to the problem of computing the Hutchinson metric between two arbitrary digitized images is considered. The technique proposed here, based on the shape of the objects as projected on the digitized screen, can be used as an effective way to establish the error between the original and the, possibly compressed, decoded image. To test the performance of our method, we apply it to compare pairs of fractal objects, as well as to compare real-world images with the corresponding reconstructed ones.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>15575153</pmid><doi>10.1109/TIP.2004.837550</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2004-12, Vol.13 (12), p.1581-1588 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2004_837550 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Artificial Intelligence Cluster Analysis Color Compressed Computational efficiency Computational geometry Computer Graphics Computer Simulation Decoding Digitization Exact sciences and technology Fractal analysis Fractals Gray-scale Hutchinson metric Image coding image comparison Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Imaging, Three-Dimensional - methods Informatics Information Storage and Retrieval - methods Information, signal and communications theory Mathematical models Neural networks Numerical Analysis, Computer-Assisted Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Shape Signal and communications theory Signal processing Signal Processing, Computer-Assisted Signal representation. Spectral analysis Signal, noise Subtraction Technique Telecommunications and information theory Testing |
title | Efficient computation of the Hutchinson metric between digitized images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20computation%20of%20the%20Hutchinson%20metric%20between%20digitized%20images&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Drakopoulos,%20V.&rft.date=2004-12-01&rft.volume=13&rft.issue=12&rft.spage=1581&rft.epage=1588&rft.pages=1581-1588&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2004.837550&rft_dat=%3Cproquest_RIE%3E2426199761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883539814&rft_id=info:pmid/15575153&rft_ieee_id=1355938&rfr_iscdi=true |