Efficient computation of the Hutchinson metric between digitized images

The Hutchinson metric is a natural measure of the discrepancy between two images for use in fractal image processing. An efficient solution to the problem of computing the Hutchinson metric between two arbitrary digitized images is considered. The technique proposed here, based on the shape of the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2004-12, Vol.13 (12), p.1581-1588
Hauptverfasser: Drakopoulos, V., Nikolaou, N.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1588
container_issue 12
container_start_page 1581
container_title IEEE transactions on image processing
container_volume 13
creator Drakopoulos, V.
Nikolaou, N.P.
description The Hutchinson metric is a natural measure of the discrepancy between two images for use in fractal image processing. An efficient solution to the problem of computing the Hutchinson metric between two arbitrary digitized images is considered. The technique proposed here, based on the shape of the objects as projected on the digitized screen, can be used as an effective way to establish the error between the original and the, possibly compressed, decoded image. To test the performance of our method, we apply it to compare pairs of fractal objects, as well as to compare real-world images with the corresponding reconstructed ones.
doi_str_mv 10.1109/TIP.2004.837550
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2004_837550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1355938</ieee_id><sourcerecordid>2426199761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-d63542bf38cec1a57abef70ae826f6309ffb849dfdd0fb57812965834b01db6b3</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4NYbK2ePQgyCNrTbJNJXn4cpdS2UGgP9RySzEubsjOzTjIU_evNsgsLHvSU8PLJl_feh5APjK4Yo-b84eZ-1VEqVporAPqKnDAjWFsr3et6p6BaxYQ5Jm9zfqaUCWDyDTlmAAoY8BNydRljCgnH0oRp2CzFlTSNzRSb8oTN9VLCUxpzrQxY5hQaj-UFcWz69JhK-o19kwb3iPkdOYpunfH9_jwlP75fPlxct7d3VzcX327bIDgvbS85iM5HrgMG5kA5j1FRh7qTUXJqYvRamD72PY0elGadkaC58JT1Xnp-Ss52uZt5-rlgLnZIOeB67UaclmwNZbLmUFPJr_8kZV0MKCX-C3a1NykUr-Dnv8DnaZnHOq7VmgM3mm3TzndQmKecZ4x2M9cVzb8so3brzFZnduvM7pzVH5_2sYsfsD_we0kV-LIHXA5uHWc3hpQPnKz9AZWV-7jjEiIenjmA4Zr_ASbqpno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883539814</pqid></control><display><type>article</type><title>Efficient computation of the Hutchinson metric between digitized images</title><source>IEEE Electronic Library (IEL)</source><creator>Drakopoulos, V. ; Nikolaou, N.P.</creator><creatorcontrib>Drakopoulos, V. ; Nikolaou, N.P.</creatorcontrib><description>The Hutchinson metric is a natural measure of the discrepancy between two images for use in fractal image processing. An efficient solution to the problem of computing the Hutchinson metric between two arbitrary digitized images is considered. The technique proposed here, based on the shape of the objects as projected on the digitized screen, can be used as an effective way to establish the error between the original and the, possibly compressed, decoded image. To test the performance of our method, we apply it to compare pairs of fractal objects, as well as to compare real-world images with the corresponding reconstructed ones.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2004.837550</identifier><identifier>PMID: 15575153</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Cluster Analysis ; Color ; Compressed ; Computational efficiency ; Computational geometry ; Computer Graphics ; Computer Simulation ; Decoding ; Digitization ; Exact sciences and technology ; Fractal analysis ; Fractals ; Gray-scale ; Hutchinson metric ; Image coding ; image comparison ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Imaging, Three-Dimensional - methods ; Informatics ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Mathematical models ; Neural networks ; Numerical Analysis, Computer-Assisted ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Shape ; Signal and communications theory ; Signal processing ; Signal Processing, Computer-Assisted ; Signal representation. Spectral analysis ; Signal, noise ; Subtraction Technique ; Telecommunications and information theory ; Testing</subject><ispartof>IEEE transactions on image processing, 2004-12, Vol.13 (12), p.1581-1588</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-d63542bf38cec1a57abef70ae826f6309ffb849dfdd0fb57812965834b01db6b3</citedby><cites>FETCH-LOGICAL-c433t-d63542bf38cec1a57abef70ae826f6309ffb849dfdd0fb57812965834b01db6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1355938$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1355938$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16266506$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15575153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drakopoulos, V.</creatorcontrib><creatorcontrib>Nikolaou, N.P.</creatorcontrib><title>Efficient computation of the Hutchinson metric between digitized images</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The Hutchinson metric is a natural measure of the discrepancy between two images for use in fractal image processing. An efficient solution to the problem of computing the Hutchinson metric between two arbitrary digitized images is considered. The technique proposed here, based on the shape of the objects as projected on the digitized screen, can be used as an effective way to establish the error between the original and the, possibly compressed, decoded image. To test the performance of our method, we apply it to compare pairs of fractal objects, as well as to compare real-world images with the corresponding reconstructed ones.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Cluster Analysis</subject><subject>Color</subject><subject>Compressed</subject><subject>Computational efficiency</subject><subject>Computational geometry</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Decoding</subject><subject>Digitization</subject><subject>Exact sciences and technology</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Gray-scale</subject><subject>Hutchinson metric</subject><subject>Image coding</subject><subject>image comparison</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Informatics</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Shape</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Subtraction Technique</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEUx4NYbK2ePQgyCNrTbJNJXn4cpdS2UGgP9RySzEubsjOzTjIU_evNsgsLHvSU8PLJl_feh5APjK4Yo-b84eZ-1VEqVporAPqKnDAjWFsr3et6p6BaxYQ5Jm9zfqaUCWDyDTlmAAoY8BNydRljCgnH0oRp2CzFlTSNzRSb8oTN9VLCUxpzrQxY5hQaj-UFcWz69JhK-o19kwb3iPkdOYpunfH9_jwlP75fPlxct7d3VzcX327bIDgvbS85iM5HrgMG5kA5j1FRh7qTUXJqYvRamD72PY0elGadkaC58JT1Xnp-Ss52uZt5-rlgLnZIOeB67UaclmwNZbLmUFPJr_8kZV0MKCX-C3a1NykUr-Dnv8DnaZnHOq7VmgM3mm3TzndQmKecZ4x2M9cVzb8so3brzFZnduvM7pzVH5_2sYsfsD_we0kV-LIHXA5uHWc3hpQPnKz9AZWV-7jjEiIenjmA4Zr_ASbqpno</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Drakopoulos, V.</creator><creator>Nikolaou, N.P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20041201</creationdate><title>Efficient computation of the Hutchinson metric between digitized images</title><author>Drakopoulos, V. ; Nikolaou, N.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-d63542bf38cec1a57abef70ae826f6309ffb849dfdd0fb57812965834b01db6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Cluster Analysis</topic><topic>Color</topic><topic>Compressed</topic><topic>Computational efficiency</topic><topic>Computational geometry</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Decoding</topic><topic>Digitization</topic><topic>Exact sciences and technology</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Gray-scale</topic><topic>Hutchinson metric</topic><topic>Image coding</topic><topic>image comparison</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Informatics</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Shape</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Subtraction Technique</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drakopoulos, V.</creatorcontrib><creatorcontrib>Nikolaou, N.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Drakopoulos, V.</au><au>Nikolaou, N.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient computation of the Hutchinson metric between digitized images</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>13</volume><issue>12</issue><spage>1581</spage><epage>1588</epage><pages>1581-1588</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The Hutchinson metric is a natural measure of the discrepancy between two images for use in fractal image processing. An efficient solution to the problem of computing the Hutchinson metric between two arbitrary digitized images is considered. The technique proposed here, based on the shape of the objects as projected on the digitized screen, can be used as an effective way to establish the error between the original and the, possibly compressed, decoded image. To test the performance of our method, we apply it to compare pairs of fractal objects, as well as to compare real-world images with the corresponding reconstructed ones.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>15575153</pmid><doi>10.1109/TIP.2004.837550</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2004-12, Vol.13 (12), p.1581-1588
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2004_837550
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Artificial Intelligence
Cluster Analysis
Color
Compressed
Computational efficiency
Computational geometry
Computer Graphics
Computer Simulation
Decoding
Digitization
Exact sciences and technology
Fractal analysis
Fractals
Gray-scale
Hutchinson metric
Image coding
image comparison
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Imaging, Three-Dimensional - methods
Informatics
Information Storage and Retrieval - methods
Information, signal and communications theory
Mathematical models
Neural networks
Numerical Analysis, Computer-Assisted
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Shape
Signal and communications theory
Signal processing
Signal Processing, Computer-Assisted
Signal representation. Spectral analysis
Signal, noise
Subtraction Technique
Telecommunications and information theory
Testing
title Efficient computation of the Hutchinson metric between digitized images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20computation%20of%20the%20Hutchinson%20metric%20between%20digitized%20images&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Drakopoulos,%20V.&rft.date=2004-12-01&rft.volume=13&rft.issue=12&rft.spage=1581&rft.epage=1588&rft.pages=1581-1588&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2004.837550&rft_dat=%3Cproquest_RIE%3E2426199761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883539814&rft_id=info:pmid/15575153&rft_ieee_id=1355938&rfr_iscdi=true