HGAIQA: A Novel Hand-Geometry-Aware Image Quality Assessment Framework for Contactless Palmprint Recognition

Contactless palmprint recognition (PPR) has gained traction due to its convenience and hygienic benefits. However, in real-world scenarios with complex backgrounds and varying hand poses, evaluating image quality to enhance recognition performance remains a significant challenge. To address this, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-13
Hauptverfasser: Zhang, Chunsheng, Liang, Xu, Fan, Dandan, Chen, Junan, Zhang, Bob, Wu, Baoyuan, Zhang, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Zhang, Chunsheng
Liang, Xu
Fan, Dandan
Chen, Junan
Zhang, Bob
Wu, Baoyuan
Zhang, David
description Contactless palmprint recognition (PPR) has gained traction due to its convenience and hygienic benefits. However, in real-world scenarios with complex backgrounds and varying hand poses, evaluating image quality to enhance recognition performance remains a significant challenge. To address this, we propose a novel hand-geometry-aware contactless palmprint image quality assessment (HGAIQA) framework. Unlike existing methods that assess only the palmprint region of interest (ROI), our framework evaluates the entire image. First, it employs a high-resolution hand segmentation network and keypoint heatmap module to identify hand region and joint keypoints. Second, it evaluates the palm's flatness based on geometric features and assesses additional quality attributes such as brightness and sharpness. At last, it determines image quality by analyzing the intraclass and interclass distributions of fused multifeatures. After integrating with subsequent ROI localization and recognition algorithms, experiments show a substantial 21.2% reduction in equal error rate (EER) for PPR on the COEP database by removing the lowest 10% of low-quality images. These results demonstrate the effectiveness of our approach in significantly enhancing PPR performance.
doi_str_mv 10.1109/TIM.2024.3485454
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2024_3485454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10731943</ieee_id><sourcerecordid>3124830409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-1ee9d27bc5a1b179e25c031e9d915da7d9ff12281caec4d11cb6f4a12803e0e23</originalsourceid><addsrcrecordid>eNpNkElPwzAQRi0EEmW5c-BgiXOKx0sSc4squkhlKSrnyHUmKJDEYLug_ntSlQOnkWbeNzN6hFwBGwMwfbtePIw543IsZK6kkkdkBEpliU5TfkxGjEGeaKnSU3IWwjtjLEtlNiLtfFYsVsUdLeij-8aWzk1fJTN0HUa_S4of45EuOvOGdLU1bRN3tAgBQ-iwj3TqTYc_zn_Q2nk6cX00NrbDlD6btvv0zcC8oHVvfRMb11-Qk9q0AS__6jl5nd6vJ_Nk-TRbTIplYiFTMQFEXfFsY5WBDWQaubJMwNDUoCqTVbqugfMcrEErKwC7SWtpgOdMIEMuzsnNYe-nd19bDLF8d1vfDydLAVzmgkmmB4odKOtdCB7rcni4M35XAiv3TsvBabl3Wv45HSLXh0iDiP_wTICWQvwCA99zCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124830409</pqid></control><display><type>article</type><title>HGAIQA: A Novel Hand-Geometry-Aware Image Quality Assessment Framework for Contactless Palmprint Recognition</title><source>IEEE Xplore</source><creator>Zhang, Chunsheng ; Liang, Xu ; Fan, Dandan ; Chen, Junan ; Zhang, Bob ; Wu, Baoyuan ; Zhang, David</creator><creatorcontrib>Zhang, Chunsheng ; Liang, Xu ; Fan, Dandan ; Chen, Junan ; Zhang, Bob ; Wu, Baoyuan ; Zhang, David</creatorcontrib><description>Contactless palmprint recognition (PPR) has gained traction due to its convenience and hygienic benefits. However, in real-world scenarios with complex backgrounds and varying hand poses, evaluating image quality to enhance recognition performance remains a significant challenge. To address this, we propose a novel hand-geometry-aware contactless palmprint image quality assessment (HGAIQA) framework. Unlike existing methods that assess only the palmprint region of interest (ROI), our framework evaluates the entire image. First, it employs a high-resolution hand segmentation network and keypoint heatmap module to identify hand region and joint keypoints. Second, it evaluates the palm's flatness based on geometric features and assesses additional quality attributes such as brightness and sharpness. At last, it determines image quality by analyzing the intraclass and interclass distributions of fused multifeatures. After integrating with subsequent ROI localization and recognition algorithms, experiments show a substantial 21.2% reduction in equal error rate (EER) for PPR on the COEP database by removing the lowest 10% of low-quality images. These results demonstrate the effectiveness of our approach in significantly enhancing PPR performance.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3485454</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Biometric recognition ; Biometric recognition systems ; contactless palmprint recognition (PPR) ; Data science ; Electronic mail ; Error analysis ; Error reduction ; Face recognition ; Feature extraction ; Fingerprint recognition ; hand geometry ; Image enhancement ; Image quality ; Image recognition ; Image resolution ; Image segmentation ; Location awareness ; measurement ; Palmprint recognition ; Performance evaluation ; Quality assessment ; Quality management</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-1ee9d27bc5a1b179e25c031e9d915da7d9ff12281caec4d11cb6f4a12803e0e23</cites><orcidid>0000-0002-5027-5286 ; 0000-0003-2183-5990 ; 0009-0005-0084-8655 ; 0000-0003-2497-9519 ; 0000-0003-4332-3494 ; 0000-0003-1168-5095 ; 0000-0002-6642-8996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10731943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10731943$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Chunsheng</creatorcontrib><creatorcontrib>Liang, Xu</creatorcontrib><creatorcontrib>Fan, Dandan</creatorcontrib><creatorcontrib>Chen, Junan</creatorcontrib><creatorcontrib>Zhang, Bob</creatorcontrib><creatorcontrib>Wu, Baoyuan</creatorcontrib><creatorcontrib>Zhang, David</creatorcontrib><title>HGAIQA: A Novel Hand-Geometry-Aware Image Quality Assessment Framework for Contactless Palmprint Recognition</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Contactless palmprint recognition (PPR) has gained traction due to its convenience and hygienic benefits. However, in real-world scenarios with complex backgrounds and varying hand poses, evaluating image quality to enhance recognition performance remains a significant challenge. To address this, we propose a novel hand-geometry-aware contactless palmprint image quality assessment (HGAIQA) framework. Unlike existing methods that assess only the palmprint region of interest (ROI), our framework evaluates the entire image. First, it employs a high-resolution hand segmentation network and keypoint heatmap module to identify hand region and joint keypoints. Second, it evaluates the palm's flatness based on geometric features and assesses additional quality attributes such as brightness and sharpness. At last, it determines image quality by analyzing the intraclass and interclass distributions of fused multifeatures. After integrating with subsequent ROI localization and recognition algorithms, experiments show a substantial 21.2% reduction in equal error rate (EER) for PPR on the COEP database by removing the lowest 10% of low-quality images. These results demonstrate the effectiveness of our approach in significantly enhancing PPR performance.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biometric recognition</subject><subject>Biometric recognition systems</subject><subject>contactless palmprint recognition (PPR)</subject><subject>Data science</subject><subject>Electronic mail</subject><subject>Error analysis</subject><subject>Error reduction</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Fingerprint recognition</subject><subject>hand geometry</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image recognition</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Location awareness</subject><subject>measurement</subject><subject>Palmprint recognition</subject><subject>Performance evaluation</subject><subject>Quality assessment</subject><subject>Quality management</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkElPwzAQRi0EEmW5c-BgiXOKx0sSc4squkhlKSrnyHUmKJDEYLug_ntSlQOnkWbeNzN6hFwBGwMwfbtePIw543IsZK6kkkdkBEpliU5TfkxGjEGeaKnSU3IWwjtjLEtlNiLtfFYsVsUdLeij-8aWzk1fJTN0HUa_S4of45EuOvOGdLU1bRN3tAgBQ-iwj3TqTYc_zn_Q2nk6cX00NrbDlD6btvv0zcC8oHVvfRMb11-Qk9q0AS__6jl5nd6vJ_Nk-TRbTIplYiFTMQFEXfFsY5WBDWQaubJMwNDUoCqTVbqugfMcrEErKwC7SWtpgOdMIEMuzsnNYe-nd19bDLF8d1vfDydLAVzmgkmmB4odKOtdCB7rcni4M35XAiv3TsvBabl3Wv45HSLXh0iDiP_wTICWQvwCA99zCw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhang, Chunsheng</creator><creator>Liang, Xu</creator><creator>Fan, Dandan</creator><creator>Chen, Junan</creator><creator>Zhang, Bob</creator><creator>Wu, Baoyuan</creator><creator>Zhang, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5027-5286</orcidid><orcidid>https://orcid.org/0000-0003-2183-5990</orcidid><orcidid>https://orcid.org/0009-0005-0084-8655</orcidid><orcidid>https://orcid.org/0000-0003-2497-9519</orcidid><orcidid>https://orcid.org/0000-0003-4332-3494</orcidid><orcidid>https://orcid.org/0000-0003-1168-5095</orcidid><orcidid>https://orcid.org/0000-0002-6642-8996</orcidid></search><sort><creationdate>2024</creationdate><title>HGAIQA: A Novel Hand-Geometry-Aware Image Quality Assessment Framework for Contactless Palmprint Recognition</title><author>Zhang, Chunsheng ; Liang, Xu ; Fan, Dandan ; Chen, Junan ; Zhang, Bob ; Wu, Baoyuan ; Zhang, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-1ee9d27bc5a1b179e25c031e9d915da7d9ff12281caec4d11cb6f4a12803e0e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biometric recognition</topic><topic>Biometric recognition systems</topic><topic>contactless palmprint recognition (PPR)</topic><topic>Data science</topic><topic>Electronic mail</topic><topic>Error analysis</topic><topic>Error reduction</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Fingerprint recognition</topic><topic>hand geometry</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image recognition</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Location awareness</topic><topic>measurement</topic><topic>Palmprint recognition</topic><topic>Performance evaluation</topic><topic>Quality assessment</topic><topic>Quality management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chunsheng</creatorcontrib><creatorcontrib>Liang, Xu</creatorcontrib><creatorcontrib>Fan, Dandan</creatorcontrib><creatorcontrib>Chen, Junan</creatorcontrib><creatorcontrib>Zhang, Bob</creatorcontrib><creatorcontrib>Wu, Baoyuan</creatorcontrib><creatorcontrib>Zhang, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Chunsheng</au><au>Liang, Xu</au><au>Fan, Dandan</au><au>Chen, Junan</au><au>Zhang, Bob</au><au>Wu, Baoyuan</au><au>Zhang, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HGAIQA: A Novel Hand-Geometry-Aware Image Quality Assessment Framework for Contactless Palmprint Recognition</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Contactless palmprint recognition (PPR) has gained traction due to its convenience and hygienic benefits. However, in real-world scenarios with complex backgrounds and varying hand poses, evaluating image quality to enhance recognition performance remains a significant challenge. To address this, we propose a novel hand-geometry-aware contactless palmprint image quality assessment (HGAIQA) framework. Unlike existing methods that assess only the palmprint region of interest (ROI), our framework evaluates the entire image. First, it employs a high-resolution hand segmentation network and keypoint heatmap module to identify hand region and joint keypoints. Second, it evaluates the palm's flatness based on geometric features and assesses additional quality attributes such as brightness and sharpness. At last, it determines image quality by analyzing the intraclass and interclass distributions of fused multifeatures. After integrating with subsequent ROI localization and recognition algorithms, experiments show a substantial 21.2% reduction in equal error rate (EER) for PPR on the COEP database by removing the lowest 10% of low-quality images. These results demonstrate the effectiveness of our approach in significantly enhancing PPR performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3485454</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5027-5286</orcidid><orcidid>https://orcid.org/0000-0003-2183-5990</orcidid><orcidid>https://orcid.org/0009-0005-0084-8655</orcidid><orcidid>https://orcid.org/0000-0003-2497-9519</orcidid><orcidid>https://orcid.org/0000-0003-4332-3494</orcidid><orcidid>https://orcid.org/0000-0003-1168-5095</orcidid><orcidid>https://orcid.org/0000-0002-6642-8996</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-13
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2024_3485454
source IEEE Xplore
subjects Accuracy
Algorithms
Biometric recognition
Biometric recognition systems
contactless palmprint recognition (PPR)
Data science
Electronic mail
Error analysis
Error reduction
Face recognition
Feature extraction
Fingerprint recognition
hand geometry
Image enhancement
Image quality
Image recognition
Image resolution
Image segmentation
Location awareness
measurement
Palmprint recognition
Performance evaluation
Quality assessment
Quality management
title HGAIQA: A Novel Hand-Geometry-Aware Image Quality Assessment Framework for Contactless Palmprint Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HGAIQA:%20A%20Novel%20Hand-Geometry-Aware%20Image%20Quality%20Assessment%20Framework%20for%20Contactless%20Palmprint%20Recognition&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Zhang,%20Chunsheng&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3485454&rft_dat=%3Cproquest_RIE%3E3124830409%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124830409&rft_id=info:pmid/&rft_ieee_id=10731943&rfr_iscdi=true