HGAIQA: A Novel Hand-Geometry-Aware Image Quality Assessment Framework for Contactless Palmprint Recognition
Contactless palmprint recognition (PPR) has gained traction due to its convenience and hygienic benefits. However, in real-world scenarios with complex backgrounds and varying hand poses, evaluating image quality to enhance recognition performance remains a significant challenge. To address this, we...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-13 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Zhang, Chunsheng Liang, Xu Fan, Dandan Chen, Junan Zhang, Bob Wu, Baoyuan Zhang, David |
description | Contactless palmprint recognition (PPR) has gained traction due to its convenience and hygienic benefits. However, in real-world scenarios with complex backgrounds and varying hand poses, evaluating image quality to enhance recognition performance remains a significant challenge. To address this, we propose a novel hand-geometry-aware contactless palmprint image quality assessment (HGAIQA) framework. Unlike existing methods that assess only the palmprint region of interest (ROI), our framework evaluates the entire image. First, it employs a high-resolution hand segmentation network and keypoint heatmap module to identify hand region and joint keypoints. Second, it evaluates the palm's flatness based on geometric features and assesses additional quality attributes such as brightness and sharpness. At last, it determines image quality by analyzing the intraclass and interclass distributions of fused multifeatures. After integrating with subsequent ROI localization and recognition algorithms, experiments show a substantial 21.2% reduction in equal error rate (EER) for PPR on the COEP database by removing the lowest 10% of low-quality images. These results demonstrate the effectiveness of our approach in significantly enhancing PPR performance. |
doi_str_mv | 10.1109/TIM.2024.3485454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2024_3485454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10731943</ieee_id><sourcerecordid>3124830409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-1ee9d27bc5a1b179e25c031e9d915da7d9ff12281caec4d11cb6f4a12803e0e23</originalsourceid><addsrcrecordid>eNpNkElPwzAQRi0EEmW5c-BgiXOKx0sSc4squkhlKSrnyHUmKJDEYLug_ntSlQOnkWbeNzN6hFwBGwMwfbtePIw543IsZK6kkkdkBEpliU5TfkxGjEGeaKnSU3IWwjtjLEtlNiLtfFYsVsUdLeij-8aWzk1fJTN0HUa_S4of45EuOvOGdLU1bRN3tAgBQ-iwj3TqTYc_zn_Q2nk6cX00NrbDlD6btvv0zcC8oHVvfRMb11-Qk9q0AS__6jl5nd6vJ_Nk-TRbTIplYiFTMQFEXfFsY5WBDWQaubJMwNDUoCqTVbqugfMcrEErKwC7SWtpgOdMIEMuzsnNYe-nd19bDLF8d1vfDydLAVzmgkmmB4odKOtdCB7rcni4M35XAiv3TsvBabl3Wv45HSLXh0iDiP_wTICWQvwCA99zCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124830409</pqid></control><display><type>article</type><title>HGAIQA: A Novel Hand-Geometry-Aware Image Quality Assessment Framework for Contactless Palmprint Recognition</title><source>IEEE Xplore</source><creator>Zhang, Chunsheng ; Liang, Xu ; Fan, Dandan ; Chen, Junan ; Zhang, Bob ; Wu, Baoyuan ; Zhang, David</creator><creatorcontrib>Zhang, Chunsheng ; Liang, Xu ; Fan, Dandan ; Chen, Junan ; Zhang, Bob ; Wu, Baoyuan ; Zhang, David</creatorcontrib><description>Contactless palmprint recognition (PPR) has gained traction due to its convenience and hygienic benefits. However, in real-world scenarios with complex backgrounds and varying hand poses, evaluating image quality to enhance recognition performance remains a significant challenge. To address this, we propose a novel hand-geometry-aware contactless palmprint image quality assessment (HGAIQA) framework. Unlike existing methods that assess only the palmprint region of interest (ROI), our framework evaluates the entire image. First, it employs a high-resolution hand segmentation network and keypoint heatmap module to identify hand region and joint keypoints. Second, it evaluates the palm's flatness based on geometric features and assesses additional quality attributes such as brightness and sharpness. At last, it determines image quality by analyzing the intraclass and interclass distributions of fused multifeatures. After integrating with subsequent ROI localization and recognition algorithms, experiments show a substantial 21.2% reduction in equal error rate (EER) for PPR on the COEP database by removing the lowest 10% of low-quality images. These results demonstrate the effectiveness of our approach in significantly enhancing PPR performance.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3485454</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Biometric recognition ; Biometric recognition systems ; contactless palmprint recognition (PPR) ; Data science ; Electronic mail ; Error analysis ; Error reduction ; Face recognition ; Feature extraction ; Fingerprint recognition ; hand geometry ; Image enhancement ; Image quality ; Image recognition ; Image resolution ; Image segmentation ; Location awareness ; measurement ; Palmprint recognition ; Performance evaluation ; Quality assessment ; Quality management</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-1ee9d27bc5a1b179e25c031e9d915da7d9ff12281caec4d11cb6f4a12803e0e23</cites><orcidid>0000-0002-5027-5286 ; 0000-0003-2183-5990 ; 0009-0005-0084-8655 ; 0000-0003-2497-9519 ; 0000-0003-4332-3494 ; 0000-0003-1168-5095 ; 0000-0002-6642-8996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10731943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10731943$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Chunsheng</creatorcontrib><creatorcontrib>Liang, Xu</creatorcontrib><creatorcontrib>Fan, Dandan</creatorcontrib><creatorcontrib>Chen, Junan</creatorcontrib><creatorcontrib>Zhang, Bob</creatorcontrib><creatorcontrib>Wu, Baoyuan</creatorcontrib><creatorcontrib>Zhang, David</creatorcontrib><title>HGAIQA: A Novel Hand-Geometry-Aware Image Quality Assessment Framework for Contactless Palmprint Recognition</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Contactless palmprint recognition (PPR) has gained traction due to its convenience and hygienic benefits. However, in real-world scenarios with complex backgrounds and varying hand poses, evaluating image quality to enhance recognition performance remains a significant challenge. To address this, we propose a novel hand-geometry-aware contactless palmprint image quality assessment (HGAIQA) framework. Unlike existing methods that assess only the palmprint region of interest (ROI), our framework evaluates the entire image. First, it employs a high-resolution hand segmentation network and keypoint heatmap module to identify hand region and joint keypoints. Second, it evaluates the palm's flatness based on geometric features and assesses additional quality attributes such as brightness and sharpness. At last, it determines image quality by analyzing the intraclass and interclass distributions of fused multifeatures. After integrating with subsequent ROI localization and recognition algorithms, experiments show a substantial 21.2% reduction in equal error rate (EER) for PPR on the COEP database by removing the lowest 10% of low-quality images. These results demonstrate the effectiveness of our approach in significantly enhancing PPR performance.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biometric recognition</subject><subject>Biometric recognition systems</subject><subject>contactless palmprint recognition (PPR)</subject><subject>Data science</subject><subject>Electronic mail</subject><subject>Error analysis</subject><subject>Error reduction</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Fingerprint recognition</subject><subject>hand geometry</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image recognition</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Location awareness</subject><subject>measurement</subject><subject>Palmprint recognition</subject><subject>Performance evaluation</subject><subject>Quality assessment</subject><subject>Quality management</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkElPwzAQRi0EEmW5c-BgiXOKx0sSc4squkhlKSrnyHUmKJDEYLug_ntSlQOnkWbeNzN6hFwBGwMwfbtePIw543IsZK6kkkdkBEpliU5TfkxGjEGeaKnSU3IWwjtjLEtlNiLtfFYsVsUdLeij-8aWzk1fJTN0HUa_S4of45EuOvOGdLU1bRN3tAgBQ-iwj3TqTYc_zn_Q2nk6cX00NrbDlD6btvv0zcC8oHVvfRMb11-Qk9q0AS__6jl5nd6vJ_Nk-TRbTIplYiFTMQFEXfFsY5WBDWQaubJMwNDUoCqTVbqugfMcrEErKwC7SWtpgOdMIEMuzsnNYe-nd19bDLF8d1vfDydLAVzmgkmmB4odKOtdCB7rcni4M35XAiv3TsvBabl3Wv45HSLXh0iDiP_wTICWQvwCA99zCw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhang, Chunsheng</creator><creator>Liang, Xu</creator><creator>Fan, Dandan</creator><creator>Chen, Junan</creator><creator>Zhang, Bob</creator><creator>Wu, Baoyuan</creator><creator>Zhang, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5027-5286</orcidid><orcidid>https://orcid.org/0000-0003-2183-5990</orcidid><orcidid>https://orcid.org/0009-0005-0084-8655</orcidid><orcidid>https://orcid.org/0000-0003-2497-9519</orcidid><orcidid>https://orcid.org/0000-0003-4332-3494</orcidid><orcidid>https://orcid.org/0000-0003-1168-5095</orcidid><orcidid>https://orcid.org/0000-0002-6642-8996</orcidid></search><sort><creationdate>2024</creationdate><title>HGAIQA: A Novel Hand-Geometry-Aware Image Quality Assessment Framework for Contactless Palmprint Recognition</title><author>Zhang, Chunsheng ; Liang, Xu ; Fan, Dandan ; Chen, Junan ; Zhang, Bob ; Wu, Baoyuan ; Zhang, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-1ee9d27bc5a1b179e25c031e9d915da7d9ff12281caec4d11cb6f4a12803e0e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biometric recognition</topic><topic>Biometric recognition systems</topic><topic>contactless palmprint recognition (PPR)</topic><topic>Data science</topic><topic>Electronic mail</topic><topic>Error analysis</topic><topic>Error reduction</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Fingerprint recognition</topic><topic>hand geometry</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image recognition</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Location awareness</topic><topic>measurement</topic><topic>Palmprint recognition</topic><topic>Performance evaluation</topic><topic>Quality assessment</topic><topic>Quality management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chunsheng</creatorcontrib><creatorcontrib>Liang, Xu</creatorcontrib><creatorcontrib>Fan, Dandan</creatorcontrib><creatorcontrib>Chen, Junan</creatorcontrib><creatorcontrib>Zhang, Bob</creatorcontrib><creatorcontrib>Wu, Baoyuan</creatorcontrib><creatorcontrib>Zhang, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Chunsheng</au><au>Liang, Xu</au><au>Fan, Dandan</au><au>Chen, Junan</au><au>Zhang, Bob</au><au>Wu, Baoyuan</au><au>Zhang, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HGAIQA: A Novel Hand-Geometry-Aware Image Quality Assessment Framework for Contactless Palmprint Recognition</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Contactless palmprint recognition (PPR) has gained traction due to its convenience and hygienic benefits. However, in real-world scenarios with complex backgrounds and varying hand poses, evaluating image quality to enhance recognition performance remains a significant challenge. To address this, we propose a novel hand-geometry-aware contactless palmprint image quality assessment (HGAIQA) framework. Unlike existing methods that assess only the palmprint region of interest (ROI), our framework evaluates the entire image. First, it employs a high-resolution hand segmentation network and keypoint heatmap module to identify hand region and joint keypoints. Second, it evaluates the palm's flatness based on geometric features and assesses additional quality attributes such as brightness and sharpness. At last, it determines image quality by analyzing the intraclass and interclass distributions of fused multifeatures. After integrating with subsequent ROI localization and recognition algorithms, experiments show a substantial 21.2% reduction in equal error rate (EER) for PPR on the COEP database by removing the lowest 10% of low-quality images. These results demonstrate the effectiveness of our approach in significantly enhancing PPR performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3485454</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5027-5286</orcidid><orcidid>https://orcid.org/0000-0003-2183-5990</orcidid><orcidid>https://orcid.org/0009-0005-0084-8655</orcidid><orcidid>https://orcid.org/0000-0003-2497-9519</orcidid><orcidid>https://orcid.org/0000-0003-4332-3494</orcidid><orcidid>https://orcid.org/0000-0003-1168-5095</orcidid><orcidid>https://orcid.org/0000-0002-6642-8996</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-13 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2024_3485454 |
source | IEEE Xplore |
subjects | Accuracy Algorithms Biometric recognition Biometric recognition systems contactless palmprint recognition (PPR) Data science Electronic mail Error analysis Error reduction Face recognition Feature extraction Fingerprint recognition hand geometry Image enhancement Image quality Image recognition Image resolution Image segmentation Location awareness measurement Palmprint recognition Performance evaluation Quality assessment Quality management |
title | HGAIQA: A Novel Hand-Geometry-Aware Image Quality Assessment Framework for Contactless Palmprint Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HGAIQA:%20A%20Novel%20Hand-Geometry-Aware%20Image%20Quality%20Assessment%20Framework%20for%20Contactless%20Palmprint%20Recognition&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Zhang,%20Chunsheng&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3485454&rft_dat=%3Cproquest_RIE%3E3124830409%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124830409&rft_id=info:pmid/&rft_ieee_id=10731943&rfr_iscdi=true |