Shank-RIO: A Shank-Mounted Ranging-Inertial Odometry for Gait Analysis and Positioning in Complex Environment

Human gait parameter estimation and localization are very important for lower limb exoskeleton control, biped robots, and biomechanics research. Gait analysis can be performed by wearable sensors worn on the lower limb joints. However, these sensors are incapable of simultaneous gait event detection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-13
Hauptverfasser: Wang, Jianxiang, Nie, Zhanguo, Zhong, Liang, Liang, Kang, Yang, Qiang, Peng, Yuxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Wang, Jianxiang
Nie, Zhanguo
Zhong, Liang
Liang, Kang
Yang, Qiang
Peng, Yuxin
description Human gait parameter estimation and localization are very important for lower limb exoskeleton control, biped robots, and biomechanics research. Gait analysis can be performed by wearable sensors worn on the lower limb joints. However, these sensors are incapable of simultaneous gait event detection and positioning and have problems with heading drift and low sampling rates. In order to address these limitations and fulfill the requirements of gait analysis, we propose a multisensor fusion technique called shank-mounted ranging-inertial odometry (Shank-RIO). Shank-RIO utilizes the fusion of a LiDAR ranging sensor and an inertial sensor placed on the shank to provide trajectory estimations for the feet and the body. A modified linear inverted pendulum model (LIPM) is employed to estimate gait parameters. Moreover, the heading rotation of the body is determined by analyzing the curvature of the body trajectory using step length and width. Based on these estimations, gait events, gait parameters, and body position can be estimated. We conduct experiments in various complex indoor and outdoor scenarios to evaluate the performance of Shank-RIO. The RMSE of the step length of the Shank-RIO was 2.26 cm. The positioning accuracy and positioning error within 1000 m are 0.799% and 0.395%, respectively. The results demonstrate that Shank-RIO serves as an effective tool for gait analysis research.
doi_str_mv 10.1109/TIM.2024.3480204
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2024_3480204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10716719</ieee_id><sourcerecordid>10_1109_TIM_2024_3480204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-d2ccc05a0334542677b5249f45d9154a06016a11999f97004918bacbf8fb1a0b3</originalsourceid><addsrcrecordid>eNpNkE1PwkAURSdGExHdu3Axf6D4XjsfHXeEIDaBYBDXzbSd4iidITPVyL8XAgtXNze55y4OIfcII0RQj-tiMUohZaOM5ZACuyAD5FwmSoj0kgwAME8U4-Ka3MT4CQBSMDkg3duHdl_Jqlg-0TE9lYX_dr1p6Eq7jXWbpHAm9FZv6bLxnenDnrY-0Jm2PR07vd1HG6l2DX310fbWuwNDraMT3-225pdO3Y8N3nXG9bfkqtXbaO7OOSTvz9P15CWZL2fFZDxPamSyT5q0rmvgGrKMcZYKKSueMtUy3ijkTIMAFBpRKdUqCcAU5pWuqzZvK9RQZUMCp986-BiDactdsJ0O-xKhPOoqD7rKo67yrOuAPJwQa4z5N5coJKrsD3ekZmU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shank-RIO: A Shank-Mounted Ranging-Inertial Odometry for Gait Analysis and Positioning in Complex Environment</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jianxiang ; Nie, Zhanguo ; Zhong, Liang ; Liang, Kang ; Yang, Qiang ; Peng, Yuxin</creator><creatorcontrib>Wang, Jianxiang ; Nie, Zhanguo ; Zhong, Liang ; Liang, Kang ; Yang, Qiang ; Peng, Yuxin</creatorcontrib><description>Human gait parameter estimation and localization are very important for lower limb exoskeleton control, biped robots, and biomechanics research. Gait analysis can be performed by wearable sensors worn on the lower limb joints. However, these sensors are incapable of simultaneous gait event detection and positioning and have problems with heading drift and low sampling rates. In order to address these limitations and fulfill the requirements of gait analysis, we propose a multisensor fusion technique called shank-mounted ranging-inertial odometry (Shank-RIO). Shank-RIO utilizes the fusion of a LiDAR ranging sensor and an inertial sensor placed on the shank to provide trajectory estimations for the feet and the body. A modified linear inverted pendulum model (LIPM) is employed to estimate gait parameters. Moreover, the heading rotation of the body is determined by analyzing the curvature of the body trajectory using step length and width. Based on these estimations, gait events, gait parameters, and body position can be estimated. We conduct experiments in various complex indoor and outdoor scenarios to evaluate the performance of Shank-RIO. The RMSE of the step length of the Shank-RIO was 2.26 cm. The positioning accuracy and positioning error within 1000 m are 0.799% and 0.395%, respectively. The results demonstrate that Shank-RIO serves as an effective tool for gait analysis research.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3480204</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Biomechanics ; Distance measurement ; Foot ; Gait parameters estimation ; human walking ; Laser radar ; Legged locomotion ; Motion capture ; multisensor fusion ; odometry ; Sensor phenomena and characterization ; Sensor systems ; Sensors ; shank mounted</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-d2ccc05a0334542677b5249f45d9154a06016a11999f97004918bacbf8fb1a0b3</cites><orcidid>0000-0001-5531-2915 ; 0000-0002-0761-4692 ; 0000-0001-9097-2601 ; 0000-0002-8121-4814 ; 0009-0008-3373-5683 ; 0009-0007-0630-5963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10716719$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10716719$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jianxiang</creatorcontrib><creatorcontrib>Nie, Zhanguo</creatorcontrib><creatorcontrib>Zhong, Liang</creatorcontrib><creatorcontrib>Liang, Kang</creatorcontrib><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Peng, Yuxin</creatorcontrib><title>Shank-RIO: A Shank-Mounted Ranging-Inertial Odometry for Gait Analysis and Positioning in Complex Environment</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Human gait parameter estimation and localization are very important for lower limb exoskeleton control, biped robots, and biomechanics research. Gait analysis can be performed by wearable sensors worn on the lower limb joints. However, these sensors are incapable of simultaneous gait event detection and positioning and have problems with heading drift and low sampling rates. In order to address these limitations and fulfill the requirements of gait analysis, we propose a multisensor fusion technique called shank-mounted ranging-inertial odometry (Shank-RIO). Shank-RIO utilizes the fusion of a LiDAR ranging sensor and an inertial sensor placed on the shank to provide trajectory estimations for the feet and the body. A modified linear inverted pendulum model (LIPM) is employed to estimate gait parameters. Moreover, the heading rotation of the body is determined by analyzing the curvature of the body trajectory using step length and width. Based on these estimations, gait events, gait parameters, and body position can be estimated. We conduct experiments in various complex indoor and outdoor scenarios to evaluate the performance of Shank-RIO. The RMSE of the step length of the Shank-RIO was 2.26 cm. The positioning accuracy and positioning error within 1000 m are 0.799% and 0.395%, respectively. The results demonstrate that Shank-RIO serves as an effective tool for gait analysis research.</description><subject>Accuracy</subject><subject>Biomechanics</subject><subject>Distance measurement</subject><subject>Foot</subject><subject>Gait parameters estimation</subject><subject>human walking</subject><subject>Laser radar</subject><subject>Legged locomotion</subject><subject>Motion capture</subject><subject>multisensor fusion</subject><subject>odometry</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>shank mounted</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAURSdGExHdu3Axf6D4XjsfHXeEIDaBYBDXzbSd4iidITPVyL8XAgtXNze55y4OIfcII0RQj-tiMUohZaOM5ZACuyAD5FwmSoj0kgwAME8U4-Ka3MT4CQBSMDkg3duHdl_Jqlg-0TE9lYX_dr1p6Eq7jXWbpHAm9FZv6bLxnenDnrY-0Jm2PR07vd1HG6l2DX310fbWuwNDraMT3-225pdO3Y8N3nXG9bfkqtXbaO7OOSTvz9P15CWZL2fFZDxPamSyT5q0rmvgGrKMcZYKKSueMtUy3ijkTIMAFBpRKdUqCcAU5pWuqzZvK9RQZUMCp986-BiDactdsJ0O-xKhPOoqD7rKo67yrOuAPJwQa4z5N5coJKrsD3ekZmU</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Jianxiang</creator><creator>Nie, Zhanguo</creator><creator>Zhong, Liang</creator><creator>Liang, Kang</creator><creator>Yang, Qiang</creator><creator>Peng, Yuxin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5531-2915</orcidid><orcidid>https://orcid.org/0000-0002-0761-4692</orcidid><orcidid>https://orcid.org/0000-0001-9097-2601</orcidid><orcidid>https://orcid.org/0000-0002-8121-4814</orcidid><orcidid>https://orcid.org/0009-0008-3373-5683</orcidid><orcidid>https://orcid.org/0009-0007-0630-5963</orcidid></search><sort><creationdate>2024</creationdate><title>Shank-RIO: A Shank-Mounted Ranging-Inertial Odometry for Gait Analysis and Positioning in Complex Environment</title><author>Wang, Jianxiang ; Nie, Zhanguo ; Zhong, Liang ; Liang, Kang ; Yang, Qiang ; Peng, Yuxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-d2ccc05a0334542677b5249f45d9154a06016a11999f97004918bacbf8fb1a0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Biomechanics</topic><topic>Distance measurement</topic><topic>Foot</topic><topic>Gait parameters estimation</topic><topic>human walking</topic><topic>Laser radar</topic><topic>Legged locomotion</topic><topic>Motion capture</topic><topic>multisensor fusion</topic><topic>odometry</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>shank mounted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianxiang</creatorcontrib><creatorcontrib>Nie, Zhanguo</creatorcontrib><creatorcontrib>Zhong, Liang</creatorcontrib><creatorcontrib>Liang, Kang</creatorcontrib><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Peng, Yuxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jianxiang</au><au>Nie, Zhanguo</au><au>Zhong, Liang</au><au>Liang, Kang</au><au>Yang, Qiang</au><au>Peng, Yuxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shank-RIO: A Shank-Mounted Ranging-Inertial Odometry for Gait Analysis and Positioning in Complex Environment</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Human gait parameter estimation and localization are very important for lower limb exoskeleton control, biped robots, and biomechanics research. Gait analysis can be performed by wearable sensors worn on the lower limb joints. However, these sensors are incapable of simultaneous gait event detection and positioning and have problems with heading drift and low sampling rates. In order to address these limitations and fulfill the requirements of gait analysis, we propose a multisensor fusion technique called shank-mounted ranging-inertial odometry (Shank-RIO). Shank-RIO utilizes the fusion of a LiDAR ranging sensor and an inertial sensor placed on the shank to provide trajectory estimations for the feet and the body. A modified linear inverted pendulum model (LIPM) is employed to estimate gait parameters. Moreover, the heading rotation of the body is determined by analyzing the curvature of the body trajectory using step length and width. Based on these estimations, gait events, gait parameters, and body position can be estimated. We conduct experiments in various complex indoor and outdoor scenarios to evaluate the performance of Shank-RIO. The RMSE of the step length of the Shank-RIO was 2.26 cm. The positioning accuracy and positioning error within 1000 m are 0.799% and 0.395%, respectively. The results demonstrate that Shank-RIO serves as an effective tool for gait analysis research.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2024.3480204</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5531-2915</orcidid><orcidid>https://orcid.org/0000-0002-0761-4692</orcidid><orcidid>https://orcid.org/0000-0001-9097-2601</orcidid><orcidid>https://orcid.org/0000-0002-8121-4814</orcidid><orcidid>https://orcid.org/0009-0008-3373-5683</orcidid><orcidid>https://orcid.org/0009-0007-0630-5963</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-13
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2024_3480204
source IEEE Electronic Library (IEL)
subjects Accuracy
Biomechanics
Distance measurement
Foot
Gait parameters estimation
human walking
Laser radar
Legged locomotion
Motion capture
multisensor fusion
odometry
Sensor phenomena and characterization
Sensor systems
Sensors
shank mounted
title Shank-RIO: A Shank-Mounted Ranging-Inertial Odometry for Gait Analysis and Positioning in Complex Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shank-RIO:%20A%20Shank-Mounted%20Ranging-Inertial%20Odometry%20for%20Gait%20Analysis%20and%20Positioning%20in%20Complex%20Environment&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Wang,%20Jianxiang&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3480204&rft_dat=%3Ccrossref_RIE%3E10_1109_TIM_2024_3480204%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10716719&rfr_iscdi=true