Process Monitoring Without Data Centralization: Least Squares Reconstruction

Centralization is indispensable to covariance-based multivariate statistical process monitoring (MSPM) methods, such as principal component analysis (PCA) and canonical correlation analysis (CCA). However, for most processes, the variable expectations rarely remain unchanged, and they may slowly cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-7
Hauptverfasser: Lou, Zhijiang, Lv, Jinziyuan, Lu, Shan, Wang, Yonghui, Xiao, Mancheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Lou, Zhijiang
Lv, Jinziyuan
Lu, Shan
Wang, Yonghui
Xiao, Mancheng
description Centralization is indispensable to covariance-based multivariate statistical process monitoring (MSPM) methods, such as principal component analysis (PCA) and canonical correlation analysis (CCA). However, for most processes, the variable expectations rarely remain unchanged, and they may slowly change or step change because of dynamic and multimode features. Though partial least squares (PLS) avoids centralization by using least squares estimation (LSE), it can only identify the relationships between variables in different datasets. We propose a process monitoring method, least squares reconstruction (LSR), which can identify the relationships between variables in different datasets and in the same datasets simultaneously. In addition, LSR avoids centralization, and hence, it can be used for monitoring dynamic and multimode processes. The results of a simulated process and a gas fractionation process show that LSR can effectively handle the issue of varying variable expectations and is more sensitive to process faults.
doi_str_mv 10.1109/TIM.2024.3476595
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2024_3476595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10711917</ieee_id><sourcerecordid>10_1109_TIM_2024_3476595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-dcfd6919616071021d33999d75dab4eb19b4d1bf9fbd1117717b15cfb0a18ce03</originalsourceid><addsrcrecordid>eNpNkLtOAzEURC0EEiHQU1D4Bzbcu-tHTIfCK9JGIAiiXPm1YBTWYDsFfD2JSEE1xcyZ4hByijBBBHW-nC8mNdRs0jApuOJ7ZIScy0oJUe-TEQBOK8W4OCRHOb8DgBRMjkj7kKL1OdNFHEKJKQyv9CWUt7gu9EoXTWd-KEmvwo8uIQ4XtPU6F_r0tdbJZ_robRxySWu7bY_JQa9X2Z_sckyeb66Xs7uqvb-dzy7byiKTpXK2d0KhEihAItTomkYp5SR32jBvUBnm0PSqNw4RpURpkNvegMap9dCMCfz92hRzTr7vPlP40Om7Q-i2NrqNjW5ro9vZ2CBnf0jw3v-bS0SFsvkFvFBczg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Process Monitoring Without Data Centralization: Least Squares Reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Lou, Zhijiang ; Lv, Jinziyuan ; Lu, Shan ; Wang, Yonghui ; Xiao, Mancheng</creator><creatorcontrib>Lou, Zhijiang ; Lv, Jinziyuan ; Lu, Shan ; Wang, Yonghui ; Xiao, Mancheng</creatorcontrib><description>Centralization is indispensable to covariance-based multivariate statistical process monitoring (MSPM) methods, such as principal component analysis (PCA) and canonical correlation analysis (CCA). However, for most processes, the variable expectations rarely remain unchanged, and they may slowly change or step change because of dynamic and multimode features. Though partial least squares (PLS) avoids centralization by using least squares estimation (LSE), it can only identify the relationships between variables in different datasets. We propose a process monitoring method, least squares reconstruction (LSR), which can identify the relationships between variables in different datasets and in the same datasets simultaneously. In addition, LSR avoids centralization, and hence, it can be used for monitoring dynamic and multimode processes. The results of a simulated process and a gas fractionation process show that LSR can effectively handle the issue of varying variable expectations and is more sensitive to process faults.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3476595</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Centralization ; Correlation ; Covariance matrices ; Fractionation ; Hidden Markov models ; least squares estimation (LSE) ; least squares reconstruction (LSR) ; Mathematical models ; multivariate statistical process monitoring (MSPM) ; partial least squares (PLS) ; Principal component analysis ; Process monitoring ; Training ; Vectors</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-7</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-dcfd6919616071021d33999d75dab4eb19b4d1bf9fbd1117717b15cfb0a18ce03</cites><orcidid>0000-0001-9357-9821 ; 0009-0002-7967-3066 ; 0000-0001-9995-5904 ; 0009-0008-4799-757X ; 0000-0003-3912-904X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10711917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10711917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lou, Zhijiang</creatorcontrib><creatorcontrib>Lv, Jinziyuan</creatorcontrib><creatorcontrib>Lu, Shan</creatorcontrib><creatorcontrib>Wang, Yonghui</creatorcontrib><creatorcontrib>Xiao, Mancheng</creatorcontrib><title>Process Monitoring Without Data Centralization: Least Squares Reconstruction</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Centralization is indispensable to covariance-based multivariate statistical process monitoring (MSPM) methods, such as principal component analysis (PCA) and canonical correlation analysis (CCA). However, for most processes, the variable expectations rarely remain unchanged, and they may slowly change or step change because of dynamic and multimode features. Though partial least squares (PLS) avoids centralization by using least squares estimation (LSE), it can only identify the relationships between variables in different datasets. We propose a process monitoring method, least squares reconstruction (LSR), which can identify the relationships between variables in different datasets and in the same datasets simultaneously. In addition, LSR avoids centralization, and hence, it can be used for monitoring dynamic and multimode processes. The results of a simulated process and a gas fractionation process show that LSR can effectively handle the issue of varying variable expectations and is more sensitive to process faults.</description><subject>Centralization</subject><subject>Correlation</subject><subject>Covariance matrices</subject><subject>Fractionation</subject><subject>Hidden Markov models</subject><subject>least squares estimation (LSE)</subject><subject>least squares reconstruction (LSR)</subject><subject>Mathematical models</subject><subject>multivariate statistical process monitoring (MSPM)</subject><subject>partial least squares (PLS)</subject><subject>Principal component analysis</subject><subject>Process monitoring</subject><subject>Training</subject><subject>Vectors</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLtOAzEURC0EEiHQU1D4Bzbcu-tHTIfCK9JGIAiiXPm1YBTWYDsFfD2JSEE1xcyZ4hByijBBBHW-nC8mNdRs0jApuOJ7ZIScy0oJUe-TEQBOK8W4OCRHOb8DgBRMjkj7kKL1OdNFHEKJKQyv9CWUt7gu9EoXTWd-KEmvwo8uIQ4XtPU6F_r0tdbJZ_robRxySWu7bY_JQa9X2Z_sckyeb66Xs7uqvb-dzy7byiKTpXK2d0KhEihAItTomkYp5SR32jBvUBnm0PSqNw4RpURpkNvegMap9dCMCfz92hRzTr7vPlP40Om7Q-i2NrqNjW5ro9vZ2CBnf0jw3v-bS0SFsvkFvFBczg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lou, Zhijiang</creator><creator>Lv, Jinziyuan</creator><creator>Lu, Shan</creator><creator>Wang, Yonghui</creator><creator>Xiao, Mancheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9357-9821</orcidid><orcidid>https://orcid.org/0009-0002-7967-3066</orcidid><orcidid>https://orcid.org/0000-0001-9995-5904</orcidid><orcidid>https://orcid.org/0009-0008-4799-757X</orcidid><orcidid>https://orcid.org/0000-0003-3912-904X</orcidid></search><sort><creationdate>2024</creationdate><title>Process Monitoring Without Data Centralization: Least Squares Reconstruction</title><author>Lou, Zhijiang ; Lv, Jinziyuan ; Lu, Shan ; Wang, Yonghui ; Xiao, Mancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-dcfd6919616071021d33999d75dab4eb19b4d1bf9fbd1117717b15cfb0a18ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Centralization</topic><topic>Correlation</topic><topic>Covariance matrices</topic><topic>Fractionation</topic><topic>Hidden Markov models</topic><topic>least squares estimation (LSE)</topic><topic>least squares reconstruction (LSR)</topic><topic>Mathematical models</topic><topic>multivariate statistical process monitoring (MSPM)</topic><topic>partial least squares (PLS)</topic><topic>Principal component analysis</topic><topic>Process monitoring</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Zhijiang</creatorcontrib><creatorcontrib>Lv, Jinziyuan</creatorcontrib><creatorcontrib>Lu, Shan</creatorcontrib><creatorcontrib>Wang, Yonghui</creatorcontrib><creatorcontrib>Xiao, Mancheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lou, Zhijiang</au><au>Lv, Jinziyuan</au><au>Lu, Shan</au><au>Wang, Yonghui</au><au>Xiao, Mancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Monitoring Without Data Centralization: Least Squares Reconstruction</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Centralization is indispensable to covariance-based multivariate statistical process monitoring (MSPM) methods, such as principal component analysis (PCA) and canonical correlation analysis (CCA). However, for most processes, the variable expectations rarely remain unchanged, and they may slowly change or step change because of dynamic and multimode features. Though partial least squares (PLS) avoids centralization by using least squares estimation (LSE), it can only identify the relationships between variables in different datasets. We propose a process monitoring method, least squares reconstruction (LSR), which can identify the relationships between variables in different datasets and in the same datasets simultaneously. In addition, LSR avoids centralization, and hence, it can be used for monitoring dynamic and multimode processes. The results of a simulated process and a gas fractionation process show that LSR can effectively handle the issue of varying variable expectations and is more sensitive to process faults.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2024.3476595</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9357-9821</orcidid><orcidid>https://orcid.org/0009-0002-7967-3066</orcidid><orcidid>https://orcid.org/0000-0001-9995-5904</orcidid><orcidid>https://orcid.org/0009-0008-4799-757X</orcidid><orcidid>https://orcid.org/0000-0003-3912-904X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-7
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2024_3476595
source IEEE Electronic Library (IEL)
subjects Centralization
Correlation
Covariance matrices
Fractionation
Hidden Markov models
least squares estimation (LSE)
least squares reconstruction (LSR)
Mathematical models
multivariate statistical process monitoring (MSPM)
partial least squares (PLS)
Principal component analysis
Process monitoring
Training
Vectors
title Process Monitoring Without Data Centralization: Least Squares Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A54%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Monitoring%20Without%20Data%20Centralization:%20Least%20Squares%20Reconstruction&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Lou,%20Zhijiang&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3476595&rft_dat=%3Ccrossref_RIE%3E10_1109_TIM_2024_3476595%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10711917&rfr_iscdi=true