Process Monitoring Without Data Centralization: Least Squares Reconstruction
Centralization is indispensable to covariance-based multivariate statistical process monitoring (MSPM) methods, such as principal component analysis (PCA) and canonical correlation analysis (CCA). However, for most processes, the variable expectations rarely remain unchanged, and they may slowly cha...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Lou, Zhijiang Lv, Jinziyuan Lu, Shan Wang, Yonghui Xiao, Mancheng |
description | Centralization is indispensable to covariance-based multivariate statistical process monitoring (MSPM) methods, such as principal component analysis (PCA) and canonical correlation analysis (CCA). However, for most processes, the variable expectations rarely remain unchanged, and they may slowly change or step change because of dynamic and multimode features. Though partial least squares (PLS) avoids centralization by using least squares estimation (LSE), it can only identify the relationships between variables in different datasets. We propose a process monitoring method, least squares reconstruction (LSR), which can identify the relationships between variables in different datasets and in the same datasets simultaneously. In addition, LSR avoids centralization, and hence, it can be used for monitoring dynamic and multimode processes. The results of a simulated process and a gas fractionation process show that LSR can effectively handle the issue of varying variable expectations and is more sensitive to process faults. |
doi_str_mv | 10.1109/TIM.2024.3476595 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2024_3476595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10711917</ieee_id><sourcerecordid>10_1109_TIM_2024_3476595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-dcfd6919616071021d33999d75dab4eb19b4d1bf9fbd1117717b15cfb0a18ce03</originalsourceid><addsrcrecordid>eNpNkLtOAzEURC0EEiHQU1D4Bzbcu-tHTIfCK9JGIAiiXPm1YBTWYDsFfD2JSEE1xcyZ4hByijBBBHW-nC8mNdRs0jApuOJ7ZIScy0oJUe-TEQBOK8W4OCRHOb8DgBRMjkj7kKL1OdNFHEKJKQyv9CWUt7gu9EoXTWd-KEmvwo8uIQ4XtPU6F_r0tdbJZ_robRxySWu7bY_JQa9X2Z_sckyeb66Xs7uqvb-dzy7byiKTpXK2d0KhEihAItTomkYp5SR32jBvUBnm0PSqNw4RpURpkNvegMap9dCMCfz92hRzTr7vPlP40Om7Q-i2NrqNjW5ro9vZ2CBnf0jw3v-bS0SFsvkFvFBczg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Process Monitoring Without Data Centralization: Least Squares Reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Lou, Zhijiang ; Lv, Jinziyuan ; Lu, Shan ; Wang, Yonghui ; Xiao, Mancheng</creator><creatorcontrib>Lou, Zhijiang ; Lv, Jinziyuan ; Lu, Shan ; Wang, Yonghui ; Xiao, Mancheng</creatorcontrib><description>Centralization is indispensable to covariance-based multivariate statistical process monitoring (MSPM) methods, such as principal component analysis (PCA) and canonical correlation analysis (CCA). However, for most processes, the variable expectations rarely remain unchanged, and they may slowly change or step change because of dynamic and multimode features. Though partial least squares (PLS) avoids centralization by using least squares estimation (LSE), it can only identify the relationships between variables in different datasets. We propose a process monitoring method, least squares reconstruction (LSR), which can identify the relationships between variables in different datasets and in the same datasets simultaneously. In addition, LSR avoids centralization, and hence, it can be used for monitoring dynamic and multimode processes. The results of a simulated process and a gas fractionation process show that LSR can effectively handle the issue of varying variable expectations and is more sensitive to process faults.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3476595</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Centralization ; Correlation ; Covariance matrices ; Fractionation ; Hidden Markov models ; least squares estimation (LSE) ; least squares reconstruction (LSR) ; Mathematical models ; multivariate statistical process monitoring (MSPM) ; partial least squares (PLS) ; Principal component analysis ; Process monitoring ; Training ; Vectors</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-7</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-dcfd6919616071021d33999d75dab4eb19b4d1bf9fbd1117717b15cfb0a18ce03</cites><orcidid>0000-0001-9357-9821 ; 0009-0002-7967-3066 ; 0000-0001-9995-5904 ; 0009-0008-4799-757X ; 0000-0003-3912-904X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10711917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10711917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lou, Zhijiang</creatorcontrib><creatorcontrib>Lv, Jinziyuan</creatorcontrib><creatorcontrib>Lu, Shan</creatorcontrib><creatorcontrib>Wang, Yonghui</creatorcontrib><creatorcontrib>Xiao, Mancheng</creatorcontrib><title>Process Monitoring Without Data Centralization: Least Squares Reconstruction</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Centralization is indispensable to covariance-based multivariate statistical process monitoring (MSPM) methods, such as principal component analysis (PCA) and canonical correlation analysis (CCA). However, for most processes, the variable expectations rarely remain unchanged, and they may slowly change or step change because of dynamic and multimode features. Though partial least squares (PLS) avoids centralization by using least squares estimation (LSE), it can only identify the relationships between variables in different datasets. We propose a process monitoring method, least squares reconstruction (LSR), which can identify the relationships between variables in different datasets and in the same datasets simultaneously. In addition, LSR avoids centralization, and hence, it can be used for monitoring dynamic and multimode processes. The results of a simulated process and a gas fractionation process show that LSR can effectively handle the issue of varying variable expectations and is more sensitive to process faults.</description><subject>Centralization</subject><subject>Correlation</subject><subject>Covariance matrices</subject><subject>Fractionation</subject><subject>Hidden Markov models</subject><subject>least squares estimation (LSE)</subject><subject>least squares reconstruction (LSR)</subject><subject>Mathematical models</subject><subject>multivariate statistical process monitoring (MSPM)</subject><subject>partial least squares (PLS)</subject><subject>Principal component analysis</subject><subject>Process monitoring</subject><subject>Training</subject><subject>Vectors</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLtOAzEURC0EEiHQU1D4Bzbcu-tHTIfCK9JGIAiiXPm1YBTWYDsFfD2JSEE1xcyZ4hByijBBBHW-nC8mNdRs0jApuOJ7ZIScy0oJUe-TEQBOK8W4OCRHOb8DgBRMjkj7kKL1OdNFHEKJKQyv9CWUt7gu9EoXTWd-KEmvwo8uIQ4XtPU6F_r0tdbJZ_robRxySWu7bY_JQa9X2Z_sckyeb66Xs7uqvb-dzy7byiKTpXK2d0KhEihAItTomkYp5SR32jBvUBnm0PSqNw4RpURpkNvegMap9dCMCfz92hRzTr7vPlP40Om7Q-i2NrqNjW5ro9vZ2CBnf0jw3v-bS0SFsvkFvFBczg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lou, Zhijiang</creator><creator>Lv, Jinziyuan</creator><creator>Lu, Shan</creator><creator>Wang, Yonghui</creator><creator>Xiao, Mancheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9357-9821</orcidid><orcidid>https://orcid.org/0009-0002-7967-3066</orcidid><orcidid>https://orcid.org/0000-0001-9995-5904</orcidid><orcidid>https://orcid.org/0009-0008-4799-757X</orcidid><orcidid>https://orcid.org/0000-0003-3912-904X</orcidid></search><sort><creationdate>2024</creationdate><title>Process Monitoring Without Data Centralization: Least Squares Reconstruction</title><author>Lou, Zhijiang ; Lv, Jinziyuan ; Lu, Shan ; Wang, Yonghui ; Xiao, Mancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-dcfd6919616071021d33999d75dab4eb19b4d1bf9fbd1117717b15cfb0a18ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Centralization</topic><topic>Correlation</topic><topic>Covariance matrices</topic><topic>Fractionation</topic><topic>Hidden Markov models</topic><topic>least squares estimation (LSE)</topic><topic>least squares reconstruction (LSR)</topic><topic>Mathematical models</topic><topic>multivariate statistical process monitoring (MSPM)</topic><topic>partial least squares (PLS)</topic><topic>Principal component analysis</topic><topic>Process monitoring</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Zhijiang</creatorcontrib><creatorcontrib>Lv, Jinziyuan</creatorcontrib><creatorcontrib>Lu, Shan</creatorcontrib><creatorcontrib>Wang, Yonghui</creatorcontrib><creatorcontrib>Xiao, Mancheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lou, Zhijiang</au><au>Lv, Jinziyuan</au><au>Lu, Shan</au><au>Wang, Yonghui</au><au>Xiao, Mancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Monitoring Without Data Centralization: Least Squares Reconstruction</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Centralization is indispensable to covariance-based multivariate statistical process monitoring (MSPM) methods, such as principal component analysis (PCA) and canonical correlation analysis (CCA). However, for most processes, the variable expectations rarely remain unchanged, and they may slowly change or step change because of dynamic and multimode features. Though partial least squares (PLS) avoids centralization by using least squares estimation (LSE), it can only identify the relationships between variables in different datasets. We propose a process monitoring method, least squares reconstruction (LSR), which can identify the relationships between variables in different datasets and in the same datasets simultaneously. In addition, LSR avoids centralization, and hence, it can be used for monitoring dynamic and multimode processes. The results of a simulated process and a gas fractionation process show that LSR can effectively handle the issue of varying variable expectations and is more sensitive to process faults.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2024.3476595</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9357-9821</orcidid><orcidid>https://orcid.org/0009-0002-7967-3066</orcidid><orcidid>https://orcid.org/0000-0001-9995-5904</orcidid><orcidid>https://orcid.org/0009-0008-4799-757X</orcidid><orcidid>https://orcid.org/0000-0003-3912-904X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-7 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2024_3476595 |
source | IEEE Electronic Library (IEL) |
subjects | Centralization Correlation Covariance matrices Fractionation Hidden Markov models least squares estimation (LSE) least squares reconstruction (LSR) Mathematical models multivariate statistical process monitoring (MSPM) partial least squares (PLS) Principal component analysis Process monitoring Training Vectors |
title | Process Monitoring Without Data Centralization: Least Squares Reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A54%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Monitoring%20Without%20Data%20Centralization:%20Least%20Squares%20Reconstruction&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Lou,%20Zhijiang&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3476595&rft_dat=%3Ccrossref_RIE%3E10_1109_TIM_2024_3476595%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10711917&rfr_iscdi=true |