3-D LiDAR-Based Place Recognition Techniques: A Review of the Past Ten Years
Accurate determination of a robot's location, which is referred to as place recognition, is essential for achieving autonomous navigation. However, complex real-world environments pose numerous challenges for place recognition, including dynamic environmental interferences, appearance changes,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-24 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Du, Zhiheng Ji, Shunping Khoshelham, Kourosh |
description | Accurate determination of a robot's location, which is referred to as place recognition, is essential for achieving autonomous navigation. However, complex real-world environments pose numerous challenges for place recognition, including dynamic environmental interferences, appearance changes, and viewpoint changes. Researchers have made significant progress over the past decade in addressing these problems. In this article, we focus on 3-D light detection and ranging (LiDAR)-based place recognition technology over this period and provide a comprehensive review of the methods and developments in this field. We aim to help new researchers quickly understand the current state of research and development trends in 3-D LiDAR-based place recognition. We begin by providing an overview of relevant concepts and different technical approaches. We then provide a detailed review of the existing solutions for different technical approaches, the evaluation metrics, and the popular benchmark datasets. Next, we summarize the development trends of existing methods and identify the key challenges of place recognition. Finally, we discuss real-world applications of 3-D LiDAR-based place recognition and outline future research directions. |
doi_str_mv | 10.1109/TIM.2024.3403194 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2024_3403194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10535355</ieee_id><sourcerecordid>10_1109_TIM_2024_3403194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-f5fceb39a5422ec138b03d5aeb32f21fd494be8764cbe177b4622099f3b62c743</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx7yD6ROvjaNt1q_CiuWUg-elmw6sZG6q5tV8b83pT3IHAZm3ns8foSccxhxDvZyOXscCRBqJBVIbtUBGXCtDbNFIQ7JAICPmVW6OCYnKb0BgCmUGZBSshtaxpvJgl27hCs63ziPdIG-fW1iH9uGLtGvm_j5hemKTvLnO-IPbQPt10jnLvVZ0NAXdF06JUfBbRKe7feQPN_dLqcPrHy6n00nJfNcmZ4FHTzW0jqthEDP5bgGudIu30QQPKyUVTWOc0FfIzemVoUQYG2QdSG8UXJIYJfruzalDkP10cV31_1WHKotjSrTqLY0qj2NbLnYWSIi_pNrmUfLP-rnWYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3-D LiDAR-Based Place Recognition Techniques: A Review of the Past Ten Years</title><source>IEEE Electronic Library (IEL)</source><creator>Du, Zhiheng ; Ji, Shunping ; Khoshelham, Kourosh</creator><creatorcontrib>Du, Zhiheng ; Ji, Shunping ; Khoshelham, Kourosh</creatorcontrib><description>Accurate determination of a robot's location, which is referred to as place recognition, is essential for achieving autonomous navigation. However, complex real-world environments pose numerous challenges for place recognition, including dynamic environmental interferences, appearance changes, and viewpoint changes. Researchers have made significant progress over the past decade in addressing these problems. In this article, we focus on 3-D light detection and ranging (LiDAR)-based place recognition technology over this period and provide a comprehensive review of the methods and developments in this field. We aim to help new researchers quickly understand the current state of research and development trends in 3-D LiDAR-based place recognition. We begin by providing an overview of relevant concepts and different technical approaches. We then provide a detailed review of the existing solutions for different technical approaches, the evaluation metrics, and the popular benchmark datasets. Next, we summarize the development trends of existing methods and identify the key challenges of place recognition. Finally, we discuss real-world applications of 3-D LiDAR-based place recognition and outline future research directions.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3403194</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>3-D light detection and ranging (LiDAR) ; autonomous navigation ; Feature extraction ; Laser radar ; place recognition ; Point cloud compression ; Reviews ; robotics ; Robots ; Three-dimensional displays</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-24</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-f5fceb39a5422ec138b03d5aeb32f21fd494be8764cbe177b4622099f3b62c743</cites><orcidid>0000-0002-3088-1481 ; 0000-0001-6639-1727 ; 0009-0004-4304-0974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10535355$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10535355$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Du, Zhiheng</creatorcontrib><creatorcontrib>Ji, Shunping</creatorcontrib><creatorcontrib>Khoshelham, Kourosh</creatorcontrib><title>3-D LiDAR-Based Place Recognition Techniques: A Review of the Past Ten Years</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Accurate determination of a robot's location, which is referred to as place recognition, is essential for achieving autonomous navigation. However, complex real-world environments pose numerous challenges for place recognition, including dynamic environmental interferences, appearance changes, and viewpoint changes. Researchers have made significant progress over the past decade in addressing these problems. In this article, we focus on 3-D light detection and ranging (LiDAR)-based place recognition technology over this period and provide a comprehensive review of the methods and developments in this field. We aim to help new researchers quickly understand the current state of research and development trends in 3-D LiDAR-based place recognition. We begin by providing an overview of relevant concepts and different technical approaches. We then provide a detailed review of the existing solutions for different technical approaches, the evaluation metrics, and the popular benchmark datasets. Next, we summarize the development trends of existing methods and identify the key challenges of place recognition. Finally, we discuss real-world applications of 3-D LiDAR-based place recognition and outline future research directions.</description><subject>3-D light detection and ranging (LiDAR)</subject><subject>autonomous navigation</subject><subject>Feature extraction</subject><subject>Laser radar</subject><subject>place recognition</subject><subject>Point cloud compression</subject><subject>Reviews</subject><subject>robotics</subject><subject>Robots</subject><subject>Three-dimensional displays</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3Dx7yD6ROvjaNt1q_CiuWUg-elmw6sZG6q5tV8b83pT3IHAZm3ns8foSccxhxDvZyOXscCRBqJBVIbtUBGXCtDbNFIQ7JAICPmVW6OCYnKb0BgCmUGZBSshtaxpvJgl27hCs63ziPdIG-fW1iH9uGLtGvm_j5hemKTvLnO-IPbQPt10jnLvVZ0NAXdF06JUfBbRKe7feQPN_dLqcPrHy6n00nJfNcmZ4FHTzW0jqthEDP5bgGudIu30QQPKyUVTWOc0FfIzemVoUQYG2QdSG8UXJIYJfruzalDkP10cV31_1WHKotjSrTqLY0qj2NbLnYWSIi_pNrmUfLP-rnWYk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Du, Zhiheng</creator><creator>Ji, Shunping</creator><creator>Khoshelham, Kourosh</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3088-1481</orcidid><orcidid>https://orcid.org/0000-0001-6639-1727</orcidid><orcidid>https://orcid.org/0009-0004-4304-0974</orcidid></search><sort><creationdate>2024</creationdate><title>3-D LiDAR-Based Place Recognition Techniques: A Review of the Past Ten Years</title><author>Du, Zhiheng ; Ji, Shunping ; Khoshelham, Kourosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-f5fceb39a5422ec138b03d5aeb32f21fd494be8764cbe177b4622099f3b62c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D light detection and ranging (LiDAR)</topic><topic>autonomous navigation</topic><topic>Feature extraction</topic><topic>Laser radar</topic><topic>place recognition</topic><topic>Point cloud compression</topic><topic>Reviews</topic><topic>robotics</topic><topic>Robots</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Zhiheng</creatorcontrib><creatorcontrib>Ji, Shunping</creatorcontrib><creatorcontrib>Khoshelham, Kourosh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Zhiheng</au><au>Ji, Shunping</au><au>Khoshelham, Kourosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D LiDAR-Based Place Recognition Techniques: A Review of the Past Ten Years</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Accurate determination of a robot's location, which is referred to as place recognition, is essential for achieving autonomous navigation. However, complex real-world environments pose numerous challenges for place recognition, including dynamic environmental interferences, appearance changes, and viewpoint changes. Researchers have made significant progress over the past decade in addressing these problems. In this article, we focus on 3-D light detection and ranging (LiDAR)-based place recognition technology over this period and provide a comprehensive review of the methods and developments in this field. We aim to help new researchers quickly understand the current state of research and development trends in 3-D LiDAR-based place recognition. We begin by providing an overview of relevant concepts and different technical approaches. We then provide a detailed review of the existing solutions for different technical approaches, the evaluation metrics, and the popular benchmark datasets. Next, we summarize the development trends of existing methods and identify the key challenges of place recognition. Finally, we discuss real-world applications of 3-D LiDAR-based place recognition and outline future research directions.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2024.3403194</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3088-1481</orcidid><orcidid>https://orcid.org/0000-0001-6639-1727</orcidid><orcidid>https://orcid.org/0009-0004-4304-0974</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-24 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2024_3403194 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D light detection and ranging (LiDAR) autonomous navigation Feature extraction Laser radar place recognition Point cloud compression Reviews robotics Robots Three-dimensional displays |
title | 3-D LiDAR-Based Place Recognition Techniques: A Review of the Past Ten Years |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20LiDAR-Based%20Place%20Recognition%20Techniques:%20A%20Review%20of%20the%20Past%20Ten%20Years&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Du,%20Zhiheng&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3403194&rft_dat=%3Ccrossref_RIE%3E10_1109_TIM_2024_3403194%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10535355&rfr_iscdi=true |