3-D LiDAR-Based Place Recognition Techniques: A Review of the Past Ten Years

Accurate determination of a robot's location, which is referred to as place recognition, is essential for achieving autonomous navigation. However, complex real-world environments pose numerous challenges for place recognition, including dynamic environmental interferences, appearance changes,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-24
Hauptverfasser: Du, Zhiheng, Ji, Shunping, Khoshelham, Kourosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Du, Zhiheng
Ji, Shunping
Khoshelham, Kourosh
description Accurate determination of a robot's location, which is referred to as place recognition, is essential for achieving autonomous navigation. However, complex real-world environments pose numerous challenges for place recognition, including dynamic environmental interferences, appearance changes, and viewpoint changes. Researchers have made significant progress over the past decade in addressing these problems. In this article, we focus on 3-D light detection and ranging (LiDAR)-based place recognition technology over this period and provide a comprehensive review of the methods and developments in this field. We aim to help new researchers quickly understand the current state of research and development trends in 3-D LiDAR-based place recognition. We begin by providing an overview of relevant concepts and different technical approaches. We then provide a detailed review of the existing solutions for different technical approaches, the evaluation metrics, and the popular benchmark datasets. Next, we summarize the development trends of existing methods and identify the key challenges of place recognition. Finally, we discuss real-world applications of 3-D LiDAR-based place recognition and outline future research directions.
doi_str_mv 10.1109/TIM.2024.3403194
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2024_3403194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10535355</ieee_id><sourcerecordid>10_1109_TIM_2024_3403194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-f5fceb39a5422ec138b03d5aeb32f21fd494be8764cbe177b4622099f3b62c743</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx7yD6ROvjaNt1q_CiuWUg-elmw6sZG6q5tV8b83pT3IHAZm3ns8foSccxhxDvZyOXscCRBqJBVIbtUBGXCtDbNFIQ7JAICPmVW6OCYnKb0BgCmUGZBSshtaxpvJgl27hCs63ziPdIG-fW1iH9uGLtGvm_j5hemKTvLnO-IPbQPt10jnLvVZ0NAXdF06JUfBbRKe7feQPN_dLqcPrHy6n00nJfNcmZ4FHTzW0jqthEDP5bgGudIu30QQPKyUVTWOc0FfIzemVoUQYG2QdSG8UXJIYJfruzalDkP10cV31_1WHKotjSrTqLY0qj2NbLnYWSIi_pNrmUfLP-rnWYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3-D LiDAR-Based Place Recognition Techniques: A Review of the Past Ten Years</title><source>IEEE Electronic Library (IEL)</source><creator>Du, Zhiheng ; Ji, Shunping ; Khoshelham, Kourosh</creator><creatorcontrib>Du, Zhiheng ; Ji, Shunping ; Khoshelham, Kourosh</creatorcontrib><description>Accurate determination of a robot's location, which is referred to as place recognition, is essential for achieving autonomous navigation. However, complex real-world environments pose numerous challenges for place recognition, including dynamic environmental interferences, appearance changes, and viewpoint changes. Researchers have made significant progress over the past decade in addressing these problems. In this article, we focus on 3-D light detection and ranging (LiDAR)-based place recognition technology over this period and provide a comprehensive review of the methods and developments in this field. We aim to help new researchers quickly understand the current state of research and development trends in 3-D LiDAR-based place recognition. We begin by providing an overview of relevant concepts and different technical approaches. We then provide a detailed review of the existing solutions for different technical approaches, the evaluation metrics, and the popular benchmark datasets. Next, we summarize the development trends of existing methods and identify the key challenges of place recognition. Finally, we discuss real-world applications of 3-D LiDAR-based place recognition and outline future research directions.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3403194</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>3-D light detection and ranging (LiDAR) ; autonomous navigation ; Feature extraction ; Laser radar ; place recognition ; Point cloud compression ; Reviews ; robotics ; Robots ; Three-dimensional displays</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-24</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-f5fceb39a5422ec138b03d5aeb32f21fd494be8764cbe177b4622099f3b62c743</cites><orcidid>0000-0002-3088-1481 ; 0000-0001-6639-1727 ; 0009-0004-4304-0974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10535355$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10535355$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Du, Zhiheng</creatorcontrib><creatorcontrib>Ji, Shunping</creatorcontrib><creatorcontrib>Khoshelham, Kourosh</creatorcontrib><title>3-D LiDAR-Based Place Recognition Techniques: A Review of the Past Ten Years</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Accurate determination of a robot's location, which is referred to as place recognition, is essential for achieving autonomous navigation. However, complex real-world environments pose numerous challenges for place recognition, including dynamic environmental interferences, appearance changes, and viewpoint changes. Researchers have made significant progress over the past decade in addressing these problems. In this article, we focus on 3-D light detection and ranging (LiDAR)-based place recognition technology over this period and provide a comprehensive review of the methods and developments in this field. We aim to help new researchers quickly understand the current state of research and development trends in 3-D LiDAR-based place recognition. We begin by providing an overview of relevant concepts and different technical approaches. We then provide a detailed review of the existing solutions for different technical approaches, the evaluation metrics, and the popular benchmark datasets. Next, we summarize the development trends of existing methods and identify the key challenges of place recognition. Finally, we discuss real-world applications of 3-D LiDAR-based place recognition and outline future research directions.</description><subject>3-D light detection and ranging (LiDAR)</subject><subject>autonomous navigation</subject><subject>Feature extraction</subject><subject>Laser radar</subject><subject>place recognition</subject><subject>Point cloud compression</subject><subject>Reviews</subject><subject>robotics</subject><subject>Robots</subject><subject>Three-dimensional displays</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3Dx7yD6ROvjaNt1q_CiuWUg-elmw6sZG6q5tV8b83pT3IHAZm3ns8foSccxhxDvZyOXscCRBqJBVIbtUBGXCtDbNFIQ7JAICPmVW6OCYnKb0BgCmUGZBSshtaxpvJgl27hCs63ziPdIG-fW1iH9uGLtGvm_j5hemKTvLnO-IPbQPt10jnLvVZ0NAXdF06JUfBbRKe7feQPN_dLqcPrHy6n00nJfNcmZ4FHTzW0jqthEDP5bgGudIu30QQPKyUVTWOc0FfIzemVoUQYG2QdSG8UXJIYJfruzalDkP10cV31_1WHKotjSrTqLY0qj2NbLnYWSIi_pNrmUfLP-rnWYk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Du, Zhiheng</creator><creator>Ji, Shunping</creator><creator>Khoshelham, Kourosh</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3088-1481</orcidid><orcidid>https://orcid.org/0000-0001-6639-1727</orcidid><orcidid>https://orcid.org/0009-0004-4304-0974</orcidid></search><sort><creationdate>2024</creationdate><title>3-D LiDAR-Based Place Recognition Techniques: A Review of the Past Ten Years</title><author>Du, Zhiheng ; Ji, Shunping ; Khoshelham, Kourosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-f5fceb39a5422ec138b03d5aeb32f21fd494be8764cbe177b4622099f3b62c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D light detection and ranging (LiDAR)</topic><topic>autonomous navigation</topic><topic>Feature extraction</topic><topic>Laser radar</topic><topic>place recognition</topic><topic>Point cloud compression</topic><topic>Reviews</topic><topic>robotics</topic><topic>Robots</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Zhiheng</creatorcontrib><creatorcontrib>Ji, Shunping</creatorcontrib><creatorcontrib>Khoshelham, Kourosh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Zhiheng</au><au>Ji, Shunping</au><au>Khoshelham, Kourosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D LiDAR-Based Place Recognition Techniques: A Review of the Past Ten Years</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Accurate determination of a robot's location, which is referred to as place recognition, is essential for achieving autonomous navigation. However, complex real-world environments pose numerous challenges for place recognition, including dynamic environmental interferences, appearance changes, and viewpoint changes. Researchers have made significant progress over the past decade in addressing these problems. In this article, we focus on 3-D light detection and ranging (LiDAR)-based place recognition technology over this period and provide a comprehensive review of the methods and developments in this field. We aim to help new researchers quickly understand the current state of research and development trends in 3-D LiDAR-based place recognition. We begin by providing an overview of relevant concepts and different technical approaches. We then provide a detailed review of the existing solutions for different technical approaches, the evaluation metrics, and the popular benchmark datasets. Next, we summarize the development trends of existing methods and identify the key challenges of place recognition. Finally, we discuss real-world applications of 3-D LiDAR-based place recognition and outline future research directions.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2024.3403194</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3088-1481</orcidid><orcidid>https://orcid.org/0000-0001-6639-1727</orcidid><orcidid>https://orcid.org/0009-0004-4304-0974</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-24
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2024_3403194
source IEEE Electronic Library (IEL)
subjects 3-D light detection and ranging (LiDAR)
autonomous navigation
Feature extraction
Laser radar
place recognition
Point cloud compression
Reviews
robotics
Robots
Three-dimensional displays
title 3-D LiDAR-Based Place Recognition Techniques: A Review of the Past Ten Years
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20LiDAR-Based%20Place%20Recognition%20Techniques:%20A%20Review%20of%20the%20Past%20Ten%20Years&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Du,%20Zhiheng&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3403194&rft_dat=%3Ccrossref_RIE%3E10_1109_TIM_2024_3403194%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10535355&rfr_iscdi=true