Imbalanced Source-Free Adaptation Diagnosis for Rotating Machinery

There have been some studies on fault diagnosis in source-free domain adaptation (SFDA) environments, but, currently, all studies assume that the fault types are uniform. When fault diagnosis under imbalanced fault categories is studied, negative migration is exhibited by all existing SFDA methods....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-11
Hauptverfasser: Liu, Yijiao, Huo, Mingying, Li, Qiang, Zhao, Hong, Xue, Yufeng, Yang, Jianfei, Qi, Naiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Liu, Yijiao
Huo, Mingying
Li, Qiang
Zhao, Hong
Xue, Yufeng
Yang, Jianfei
Qi, Naiming
description There have been some studies on fault diagnosis in source-free domain adaptation (SFDA) environments, but, currently, all studies assume that the fault types are uniform. When fault diagnosis under imbalanced fault categories is studied, negative migration is exhibited by all existing SFDA methods. In reality, the vast majority of the entire lifecycle of devices is accounted for by the duration of healthy operation, while the fault market accounts for a relatively small portion. To address the problem of both label set drift and domain drift, an imbalanced SFDA (ISFDA) method on bearing fault diagnosis is proposed. In short, a potent source diagnosis model is first generated as the learning foundation using source information. Then, label modification, intraclass aggregation, and interclass alienation are combined for unsupervised learning in the target. Finally, a brand-new category centroids separation loss function is created. The robustness and stability of the algorithm were validated on two public datasets, including fault diagnosis experiments for ordinary bearings and aviation high-speed bearings. The best results are achieved by our method, comprehensively surpassing existing unsupervised domain adaptation (UDA) and SFDA methods. Finally, the powerful diagnostic ability of our method in imbalanced fault data was demonstrated through various visual verification methods.
doi_str_mv 10.1109/TIM.2024.3400354
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2024_3400354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10530023</ieee_id><sourcerecordid>3058298407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-bd0f3860920e34d62cf66c00eee16abdb791d8a715284ecf3eeee381bd8fdb733</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXjYxPPi9HO7R0RREoiJ4rnp9gOXwBbb5cB_bwkcPE0y7715kx9C9xhGGEP9tJwtRgQIG1EGQDm7QAPMeVXWQpBLNADAsqwZF9foJqU1AFSCVQP0PNs2eqM742zxFfbRuHIanSvGVu963behK15avepCalPhQyw-w3HdrYqFNj9t5-LhFl15vUnu7jyH6Hv6upy8l_OPt9lkPC8NYbwvGwueSgE1AUeZFcR4IQyAcw4L3dimqrGVusKcSOaMp1lwVOLGSp9FSofo8XR3F8Pv3qVerfPDXa5UFLgktWRQZRecXCaGlKLzahfbrY4HhUEdSalMSh1JqTOpHHk4Rdrc-M_OKQCh9A9dP2SR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058298407</pqid></control><display><type>article</type><title>Imbalanced Source-Free Adaptation Diagnosis for Rotating Machinery</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yijiao ; Huo, Mingying ; Li, Qiang ; Zhao, Hong ; Xue, Yufeng ; Yang, Jianfei ; Qi, Naiming</creator><creatorcontrib>Liu, Yijiao ; Huo, Mingying ; Li, Qiang ; Zhao, Hong ; Xue, Yufeng ; Yang, Jianfei ; Qi, Naiming</creatorcontrib><description>There have been some studies on fault diagnosis in source-free domain adaptation (SFDA) environments, but, currently, all studies assume that the fault types are uniform. When fault diagnosis under imbalanced fault categories is studied, negative migration is exhibited by all existing SFDA methods. In reality, the vast majority of the entire lifecycle of devices is accounted for by the duration of healthy operation, while the fault market accounts for a relatively small portion. To address the problem of both label set drift and domain drift, an imbalanced SFDA (ISFDA) method on bearing fault diagnosis is proposed. In short, a potent source diagnosis model is first generated as the learning foundation using source information. Then, label modification, intraclass aggregation, and interclass alienation are combined for unsupervised learning in the target. Finally, a brand-new category centroids separation loss function is created. The robustness and stability of the algorithm were validated on two public datasets, including fault diagnosis experiments for ordinary bearings and aviation high-speed bearings. The best results are achieved by our method, comprehensively surpassing existing unsupervised domain adaptation (UDA) and SFDA methods. Finally, the powerful diagnostic ability of our method in imbalanced fault data was demonstrated through various visual verification methods.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3400354</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; Algorithms ; Centroids ; Deep neural network (DNN) ; Drift ; Fault diagnosis ; fault diagnostic ; Feature extraction ; imbalanced class data ; Kernel ; Labels ; Machinery ; Prediction algorithms ; Rotating machinery ; Task analysis ; transfer learning (TL) ; unsupervised domain adaptation (UDA) ; Unsupervised learning</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-bd0f3860920e34d62cf66c00eee16abdb791d8a715284ecf3eeee381bd8fdb733</cites><orcidid>0000-0001-9105-6197 ; 0000-0002-7887-3181 ; 0009-0000-8524-4415 ; 0000-0002-8075-0439 ; 0000-0003-0401-5616 ; 0009-0003-5382-0571 ; 0009-0003-3320-996X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10530023$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10530023$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yijiao</creatorcontrib><creatorcontrib>Huo, Mingying</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Zhao, Hong</creatorcontrib><creatorcontrib>Xue, Yufeng</creatorcontrib><creatorcontrib>Yang, Jianfei</creatorcontrib><creatorcontrib>Qi, Naiming</creatorcontrib><title>Imbalanced Source-Free Adaptation Diagnosis for Rotating Machinery</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>There have been some studies on fault diagnosis in source-free domain adaptation (SFDA) environments, but, currently, all studies assume that the fault types are uniform. When fault diagnosis under imbalanced fault categories is studied, negative migration is exhibited by all existing SFDA methods. In reality, the vast majority of the entire lifecycle of devices is accounted for by the duration of healthy operation, while the fault market accounts for a relatively small portion. To address the problem of both label set drift and domain drift, an imbalanced SFDA (ISFDA) method on bearing fault diagnosis is proposed. In short, a potent source diagnosis model is first generated as the learning foundation using source information. Then, label modification, intraclass aggregation, and interclass alienation are combined for unsupervised learning in the target. Finally, a brand-new category centroids separation loss function is created. The robustness and stability of the algorithm were validated on two public datasets, including fault diagnosis experiments for ordinary bearings and aviation high-speed bearings. The best results are achieved by our method, comprehensively surpassing existing unsupervised domain adaptation (UDA) and SFDA methods. Finally, the powerful diagnostic ability of our method in imbalanced fault data was demonstrated through various visual verification methods.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Centroids</subject><subject>Deep neural network (DNN)</subject><subject>Drift</subject><subject>Fault diagnosis</subject><subject>fault diagnostic</subject><subject>Feature extraction</subject><subject>imbalanced class data</subject><subject>Kernel</subject><subject>Labels</subject><subject>Machinery</subject><subject>Prediction algorithms</subject><subject>Rotating machinery</subject><subject>Task analysis</subject><subject>transfer learning (TL)</subject><subject>unsupervised domain adaptation (UDA)</subject><subject>Unsupervised learning</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxRujiYjePXjYxPPi9HO7R0RREoiJ4rnp9gOXwBbb5cB_bwkcPE0y7715kx9C9xhGGEP9tJwtRgQIG1EGQDm7QAPMeVXWQpBLNADAsqwZF9foJqU1AFSCVQP0PNs2eqM742zxFfbRuHIanSvGVu963behK15avepCalPhQyw-w3HdrYqFNj9t5-LhFl15vUnu7jyH6Hv6upy8l_OPt9lkPC8NYbwvGwueSgE1AUeZFcR4IQyAcw4L3dimqrGVusKcSOaMp1lwVOLGSp9FSofo8XR3F8Pv3qVerfPDXa5UFLgktWRQZRecXCaGlKLzahfbrY4HhUEdSalMSh1JqTOpHHk4Rdrc-M_OKQCh9A9dP2SR</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Yijiao</creator><creator>Huo, Mingying</creator><creator>Li, Qiang</creator><creator>Zhao, Hong</creator><creator>Xue, Yufeng</creator><creator>Yang, Jianfei</creator><creator>Qi, Naiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9105-6197</orcidid><orcidid>https://orcid.org/0000-0002-7887-3181</orcidid><orcidid>https://orcid.org/0009-0000-8524-4415</orcidid><orcidid>https://orcid.org/0000-0002-8075-0439</orcidid><orcidid>https://orcid.org/0000-0003-0401-5616</orcidid><orcidid>https://orcid.org/0009-0003-5382-0571</orcidid><orcidid>https://orcid.org/0009-0003-3320-996X</orcidid></search><sort><creationdate>2024</creationdate><title>Imbalanced Source-Free Adaptation Diagnosis for Rotating Machinery</title><author>Liu, Yijiao ; Huo, Mingying ; Li, Qiang ; Zhao, Hong ; Xue, Yufeng ; Yang, Jianfei ; Qi, Naiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-bd0f3860920e34d62cf66c00eee16abdb791d8a715284ecf3eeee381bd8fdb733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Centroids</topic><topic>Deep neural network (DNN)</topic><topic>Drift</topic><topic>Fault diagnosis</topic><topic>fault diagnostic</topic><topic>Feature extraction</topic><topic>imbalanced class data</topic><topic>Kernel</topic><topic>Labels</topic><topic>Machinery</topic><topic>Prediction algorithms</topic><topic>Rotating machinery</topic><topic>Task analysis</topic><topic>transfer learning (TL)</topic><topic>unsupervised domain adaptation (UDA)</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yijiao</creatorcontrib><creatorcontrib>Huo, Mingying</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Zhao, Hong</creatorcontrib><creatorcontrib>Xue, Yufeng</creatorcontrib><creatorcontrib>Yang, Jianfei</creatorcontrib><creatorcontrib>Qi, Naiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yijiao</au><au>Huo, Mingying</au><au>Li, Qiang</au><au>Zhao, Hong</au><au>Xue, Yufeng</au><au>Yang, Jianfei</au><au>Qi, Naiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imbalanced Source-Free Adaptation Diagnosis for Rotating Machinery</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>There have been some studies on fault diagnosis in source-free domain adaptation (SFDA) environments, but, currently, all studies assume that the fault types are uniform. When fault diagnosis under imbalanced fault categories is studied, negative migration is exhibited by all existing SFDA methods. In reality, the vast majority of the entire lifecycle of devices is accounted for by the duration of healthy operation, while the fault market accounts for a relatively small portion. To address the problem of both label set drift and domain drift, an imbalanced SFDA (ISFDA) method on bearing fault diagnosis is proposed. In short, a potent source diagnosis model is first generated as the learning foundation using source information. Then, label modification, intraclass aggregation, and interclass alienation are combined for unsupervised learning in the target. Finally, a brand-new category centroids separation loss function is created. The robustness and stability of the algorithm were validated on two public datasets, including fault diagnosis experiments for ordinary bearings and aviation high-speed bearings. The best results are achieved by our method, comprehensively surpassing existing unsupervised domain adaptation (UDA) and SFDA methods. Finally, the powerful diagnostic ability of our method in imbalanced fault data was demonstrated through various visual verification methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3400354</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9105-6197</orcidid><orcidid>https://orcid.org/0000-0002-7887-3181</orcidid><orcidid>https://orcid.org/0009-0000-8524-4415</orcidid><orcidid>https://orcid.org/0000-0002-8075-0439</orcidid><orcidid>https://orcid.org/0000-0003-0401-5616</orcidid><orcidid>https://orcid.org/0009-0003-5382-0571</orcidid><orcidid>https://orcid.org/0009-0003-3320-996X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2024_3400354
source IEEE Electronic Library (IEL)
subjects Adaptation
Adaptation models
Algorithms
Centroids
Deep neural network (DNN)
Drift
Fault diagnosis
fault diagnostic
Feature extraction
imbalanced class data
Kernel
Labels
Machinery
Prediction algorithms
Rotating machinery
Task analysis
transfer learning (TL)
unsupervised domain adaptation (UDA)
Unsupervised learning
title Imbalanced Source-Free Adaptation Diagnosis for Rotating Machinery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imbalanced%20Source-Free%20Adaptation%20Diagnosis%20for%20Rotating%20Machinery&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Liu,%20Yijiao&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3400354&rft_dat=%3Cproquest_RIE%3E3058298407%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058298407&rft_id=info:pmid/&rft_ieee_id=10530023&rfr_iscdi=true