Imbalanced Source-Free Adaptation Diagnosis for Rotating Machinery
There have been some studies on fault diagnosis in source-free domain adaptation (SFDA) environments, but, currently, all studies assume that the fault types are uniform. When fault diagnosis under imbalanced fault categories is studied, negative migration is exhibited by all existing SFDA methods....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Liu, Yijiao Huo, Mingying Li, Qiang Zhao, Hong Xue, Yufeng Yang, Jianfei Qi, Naiming |
description | There have been some studies on fault diagnosis in source-free domain adaptation (SFDA) environments, but, currently, all studies assume that the fault types are uniform. When fault diagnosis under imbalanced fault categories is studied, negative migration is exhibited by all existing SFDA methods. In reality, the vast majority of the entire lifecycle of devices is accounted for by the duration of healthy operation, while the fault market accounts for a relatively small portion. To address the problem of both label set drift and domain drift, an imbalanced SFDA (ISFDA) method on bearing fault diagnosis is proposed. In short, a potent source diagnosis model is first generated as the learning foundation using source information. Then, label modification, intraclass aggregation, and interclass alienation are combined for unsupervised learning in the target. Finally, a brand-new category centroids separation loss function is created. The robustness and stability of the algorithm were validated on two public datasets, including fault diagnosis experiments for ordinary bearings and aviation high-speed bearings. The best results are achieved by our method, comprehensively surpassing existing unsupervised domain adaptation (UDA) and SFDA methods. Finally, the powerful diagnostic ability of our method in imbalanced fault data was demonstrated through various visual verification methods. |
doi_str_mv | 10.1109/TIM.2024.3400354 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2024_3400354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10530023</ieee_id><sourcerecordid>3058298407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-bd0f3860920e34d62cf66c00eee16abdb791d8a715284ecf3eeee381bd8fdb733</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXjYxPPi9HO7R0RREoiJ4rnp9gOXwBbb5cB_bwkcPE0y7715kx9C9xhGGEP9tJwtRgQIG1EGQDm7QAPMeVXWQpBLNADAsqwZF9foJqU1AFSCVQP0PNs2eqM742zxFfbRuHIanSvGVu963behK15avepCalPhQyw-w3HdrYqFNj9t5-LhFl15vUnu7jyH6Hv6upy8l_OPt9lkPC8NYbwvGwueSgE1AUeZFcR4IQyAcw4L3dimqrGVusKcSOaMp1lwVOLGSp9FSofo8XR3F8Pv3qVerfPDXa5UFLgktWRQZRecXCaGlKLzahfbrY4HhUEdSalMSh1JqTOpHHk4Rdrc-M_OKQCh9A9dP2SR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058298407</pqid></control><display><type>article</type><title>Imbalanced Source-Free Adaptation Diagnosis for Rotating Machinery</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yijiao ; Huo, Mingying ; Li, Qiang ; Zhao, Hong ; Xue, Yufeng ; Yang, Jianfei ; Qi, Naiming</creator><creatorcontrib>Liu, Yijiao ; Huo, Mingying ; Li, Qiang ; Zhao, Hong ; Xue, Yufeng ; Yang, Jianfei ; Qi, Naiming</creatorcontrib><description>There have been some studies on fault diagnosis in source-free domain adaptation (SFDA) environments, but, currently, all studies assume that the fault types are uniform. When fault diagnosis under imbalanced fault categories is studied, negative migration is exhibited by all existing SFDA methods. In reality, the vast majority of the entire lifecycle of devices is accounted for by the duration of healthy operation, while the fault market accounts for a relatively small portion. To address the problem of both label set drift and domain drift, an imbalanced SFDA (ISFDA) method on bearing fault diagnosis is proposed. In short, a potent source diagnosis model is first generated as the learning foundation using source information. Then, label modification, intraclass aggregation, and interclass alienation are combined for unsupervised learning in the target. Finally, a brand-new category centroids separation loss function is created. The robustness and stability of the algorithm were validated on two public datasets, including fault diagnosis experiments for ordinary bearings and aviation high-speed bearings. The best results are achieved by our method, comprehensively surpassing existing unsupervised domain adaptation (UDA) and SFDA methods. Finally, the powerful diagnostic ability of our method in imbalanced fault data was demonstrated through various visual verification methods.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3400354</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; Algorithms ; Centroids ; Deep neural network (DNN) ; Drift ; Fault diagnosis ; fault diagnostic ; Feature extraction ; imbalanced class data ; Kernel ; Labels ; Machinery ; Prediction algorithms ; Rotating machinery ; Task analysis ; transfer learning (TL) ; unsupervised domain adaptation (UDA) ; Unsupervised learning</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-bd0f3860920e34d62cf66c00eee16abdb791d8a715284ecf3eeee381bd8fdb733</cites><orcidid>0000-0001-9105-6197 ; 0000-0002-7887-3181 ; 0009-0000-8524-4415 ; 0000-0002-8075-0439 ; 0000-0003-0401-5616 ; 0009-0003-5382-0571 ; 0009-0003-3320-996X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10530023$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10530023$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yijiao</creatorcontrib><creatorcontrib>Huo, Mingying</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Zhao, Hong</creatorcontrib><creatorcontrib>Xue, Yufeng</creatorcontrib><creatorcontrib>Yang, Jianfei</creatorcontrib><creatorcontrib>Qi, Naiming</creatorcontrib><title>Imbalanced Source-Free Adaptation Diagnosis for Rotating Machinery</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>There have been some studies on fault diagnosis in source-free domain adaptation (SFDA) environments, but, currently, all studies assume that the fault types are uniform. When fault diagnosis under imbalanced fault categories is studied, negative migration is exhibited by all existing SFDA methods. In reality, the vast majority of the entire lifecycle of devices is accounted for by the duration of healthy operation, while the fault market accounts for a relatively small portion. To address the problem of both label set drift and domain drift, an imbalanced SFDA (ISFDA) method on bearing fault diagnosis is proposed. In short, a potent source diagnosis model is first generated as the learning foundation using source information. Then, label modification, intraclass aggregation, and interclass alienation are combined for unsupervised learning in the target. Finally, a brand-new category centroids separation loss function is created. The robustness and stability of the algorithm were validated on two public datasets, including fault diagnosis experiments for ordinary bearings and aviation high-speed bearings. The best results are achieved by our method, comprehensively surpassing existing unsupervised domain adaptation (UDA) and SFDA methods. Finally, the powerful diagnostic ability of our method in imbalanced fault data was demonstrated through various visual verification methods.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Centroids</subject><subject>Deep neural network (DNN)</subject><subject>Drift</subject><subject>Fault diagnosis</subject><subject>fault diagnostic</subject><subject>Feature extraction</subject><subject>imbalanced class data</subject><subject>Kernel</subject><subject>Labels</subject><subject>Machinery</subject><subject>Prediction algorithms</subject><subject>Rotating machinery</subject><subject>Task analysis</subject><subject>transfer learning (TL)</subject><subject>unsupervised domain adaptation (UDA)</subject><subject>Unsupervised learning</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxRujiYjePXjYxPPi9HO7R0RREoiJ4rnp9gOXwBbb5cB_bwkcPE0y7715kx9C9xhGGEP9tJwtRgQIG1EGQDm7QAPMeVXWQpBLNADAsqwZF9foJqU1AFSCVQP0PNs2eqM742zxFfbRuHIanSvGVu963behK15avepCalPhQyw-w3HdrYqFNj9t5-LhFl15vUnu7jyH6Hv6upy8l_OPt9lkPC8NYbwvGwueSgE1AUeZFcR4IQyAcw4L3dimqrGVusKcSOaMp1lwVOLGSp9FSofo8XR3F8Pv3qVerfPDXa5UFLgktWRQZRecXCaGlKLzahfbrY4HhUEdSalMSh1JqTOpHHk4Rdrc-M_OKQCh9A9dP2SR</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Yijiao</creator><creator>Huo, Mingying</creator><creator>Li, Qiang</creator><creator>Zhao, Hong</creator><creator>Xue, Yufeng</creator><creator>Yang, Jianfei</creator><creator>Qi, Naiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9105-6197</orcidid><orcidid>https://orcid.org/0000-0002-7887-3181</orcidid><orcidid>https://orcid.org/0009-0000-8524-4415</orcidid><orcidid>https://orcid.org/0000-0002-8075-0439</orcidid><orcidid>https://orcid.org/0000-0003-0401-5616</orcidid><orcidid>https://orcid.org/0009-0003-5382-0571</orcidid><orcidid>https://orcid.org/0009-0003-3320-996X</orcidid></search><sort><creationdate>2024</creationdate><title>Imbalanced Source-Free Adaptation Diagnosis for Rotating Machinery</title><author>Liu, Yijiao ; Huo, Mingying ; Li, Qiang ; Zhao, Hong ; Xue, Yufeng ; Yang, Jianfei ; Qi, Naiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-bd0f3860920e34d62cf66c00eee16abdb791d8a715284ecf3eeee381bd8fdb733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Centroids</topic><topic>Deep neural network (DNN)</topic><topic>Drift</topic><topic>Fault diagnosis</topic><topic>fault diagnostic</topic><topic>Feature extraction</topic><topic>imbalanced class data</topic><topic>Kernel</topic><topic>Labels</topic><topic>Machinery</topic><topic>Prediction algorithms</topic><topic>Rotating machinery</topic><topic>Task analysis</topic><topic>transfer learning (TL)</topic><topic>unsupervised domain adaptation (UDA)</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yijiao</creatorcontrib><creatorcontrib>Huo, Mingying</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Zhao, Hong</creatorcontrib><creatorcontrib>Xue, Yufeng</creatorcontrib><creatorcontrib>Yang, Jianfei</creatorcontrib><creatorcontrib>Qi, Naiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yijiao</au><au>Huo, Mingying</au><au>Li, Qiang</au><au>Zhao, Hong</au><au>Xue, Yufeng</au><au>Yang, Jianfei</au><au>Qi, Naiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imbalanced Source-Free Adaptation Diagnosis for Rotating Machinery</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>There have been some studies on fault diagnosis in source-free domain adaptation (SFDA) environments, but, currently, all studies assume that the fault types are uniform. When fault diagnosis under imbalanced fault categories is studied, negative migration is exhibited by all existing SFDA methods. In reality, the vast majority of the entire lifecycle of devices is accounted for by the duration of healthy operation, while the fault market accounts for a relatively small portion. To address the problem of both label set drift and domain drift, an imbalanced SFDA (ISFDA) method on bearing fault diagnosis is proposed. In short, a potent source diagnosis model is first generated as the learning foundation using source information. Then, label modification, intraclass aggregation, and interclass alienation are combined for unsupervised learning in the target. Finally, a brand-new category centroids separation loss function is created. The robustness and stability of the algorithm were validated on two public datasets, including fault diagnosis experiments for ordinary bearings and aviation high-speed bearings. The best results are achieved by our method, comprehensively surpassing existing unsupervised domain adaptation (UDA) and SFDA methods. Finally, the powerful diagnostic ability of our method in imbalanced fault data was demonstrated through various visual verification methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3400354</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9105-6197</orcidid><orcidid>https://orcid.org/0000-0002-7887-3181</orcidid><orcidid>https://orcid.org/0009-0000-8524-4415</orcidid><orcidid>https://orcid.org/0000-0002-8075-0439</orcidid><orcidid>https://orcid.org/0000-0003-0401-5616</orcidid><orcidid>https://orcid.org/0009-0003-5382-0571</orcidid><orcidid>https://orcid.org/0009-0003-3320-996X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2024_3400354 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Adaptation models Algorithms Centroids Deep neural network (DNN) Drift Fault diagnosis fault diagnostic Feature extraction imbalanced class data Kernel Labels Machinery Prediction algorithms Rotating machinery Task analysis transfer learning (TL) unsupervised domain adaptation (UDA) Unsupervised learning |
title | Imbalanced Source-Free Adaptation Diagnosis for Rotating Machinery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imbalanced%20Source-Free%20Adaptation%20Diagnosis%20for%20Rotating%20Machinery&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Liu,%20Yijiao&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3400354&rft_dat=%3Cproquest_RIE%3E3058298407%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058298407&rft_id=info:pmid/&rft_ieee_id=10530023&rfr_iscdi=true |