Deep Feature Contrasting for Industrial Image Anomaly Segmentation
Industrial image anomaly segmentation is pivotal in ensuring the quality inspection of products within intelligent manufacturing systems. Recent research efforts have predominantly focused on deep learning-based approaches to address this challenge. However, unsupervised methods are often susceptibl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Wan, Qian Cao, Yunkang Gao, Liang Li, Xinyu Gao, Yiping |
description | Industrial image anomaly segmentation is pivotal in ensuring the quality inspection of products within intelligent manufacturing systems. Recent research efforts have predominantly focused on deep learning-based approaches to address this challenge. However, unsupervised methods are often susceptible to distribution shifting, while supervised methods face significant obstacles due to imbalanced samples, resulting in suboptimal accuracy for anomaly segmentation. This article introduces a novel end-to-end deep feature contrasting (DFC) method aimed at enhancing segmentation accuracy in scenarios with limited supervision and pixel-level labeled anomalous images. DFC includes the introduction of a novel backbone feature contrasting pyramid (BFCP) featuring dual-model channels, which effectively captures the distribution of normality. In addition, a novel model-independent semantic feature contrasting (SFC) technique, implemented through self-contrasting, is proposed to train a discriminative segmenting head module (SHM) that addresses the challenge of sample unbalance. Furthermore, this article presents two types of SFC, namely, global and local, which are suggested to improve the overall performance. The proposed DFC method achieves F1 of 0.787 and 0.665 on two real-world industrial datasets (Kolektor Surface Defect Dataset (KSDD) and KSDD2) and is applied to a practical application of anomaly segmentation of printed circuit boards, demonstrating the superior anomaly segmenting performance. |
doi_str_mv | 10.1109/TIM.2023.3348901 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2023_3348901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10379172</ieee_id><sourcerecordid>2932564378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-83f54ec63de875829ed7336e3a0061d828de9d2027ee36a87b04c222a98c0c383</originalsourceid><addsrcrecordid>eNpNkL9PwzAQhS0EEqWwMzBEYk45-xL_GEuhEKmIgTJbJrlUqZqk2M7Q_55U7cD0lu_d6X2M3XOYcQ7maV18zAQInCFm2gC_YBOe5yo1UopLNgHgOjVZLq_ZTQhbAFAyUxP2_EK0T5bk4uApWfRd9C7Eptskde-ToquGEH3jdknRug0l865v3e6QfNGmpS662PTdLbuq3S7Q3Tmn7Hv5ul68p6vPt2IxX6WlMCKmGus8o1JiRVrlWhiqFKIkdACSV1roikw1TlBEKJ1WP5CVQghndAklapyyx9Pdve9_BwrRbvvBd-NLKwyKXGaojhScqNL3IXiq7d43rfMHy8EeTdnRlD2asmdTY-XhVGmI6B-OynAl8A_GAmNt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932564378</pqid></control><display><type>article</type><title>Deep Feature Contrasting for Industrial Image Anomaly Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Wan, Qian ; Cao, Yunkang ; Gao, Liang ; Li, Xinyu ; Gao, Yiping</creator><creatorcontrib>Wan, Qian ; Cao, Yunkang ; Gao, Liang ; Li, Xinyu ; Gao, Yiping</creatorcontrib><description>Industrial image anomaly segmentation is pivotal in ensuring the quality inspection of products within intelligent manufacturing systems. Recent research efforts have predominantly focused on deep learning-based approaches to address this challenge. However, unsupervised methods are often susceptible to distribution shifting, while supervised methods face significant obstacles due to imbalanced samples, resulting in suboptimal accuracy for anomaly segmentation. This article introduces a novel end-to-end deep feature contrasting (DFC) method aimed at enhancing segmentation accuracy in scenarios with limited supervision and pixel-level labeled anomalous images. DFC includes the introduction of a novel backbone feature contrasting pyramid (BFCP) featuring dual-model channels, which effectively captures the distribution of normality. In addition, a novel model-independent semantic feature contrasting (SFC) technique, implemented through self-contrasting, is proposed to train a discriminative segmenting head module (SHM) that addresses the challenge of sample unbalance. Furthermore, this article presents two types of SFC, namely, global and local, which are suggested to improve the overall performance. The proposed DFC method achieves F1 of 0.787 and 0.665 on two real-world industrial datasets (Kolektor Surface Defect Dataset (KSDD) and KSDD2) and is applied to a practical application of anomaly segmentation of printed circuit boards, demonstrating the superior anomaly segmenting performance.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3348901</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomaly segmentation ; Circuit boards ; Convolutional neural networks ; Datasets ; deep feature contrasting (DFC) ; Feature extraction ; image anomaly ; Image segmentation ; Intelligent manufacturing systems ; Neural networks ; Semantic segmentation ; Semantics ; Surface defects ; Testing ; Training</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-83f54ec63de875829ed7336e3a0061d828de9d2027ee36a87b04c222a98c0c383</citedby><cites>FETCH-LOGICAL-c292t-83f54ec63de875829ed7336e3a0061d828de9d2027ee36a87b04c222a98c0c383</cites><orcidid>0000-0002-1485-0722 ; 0000-0002-9517-7698 ; 0000-0001-7619-6618 ; 0000-0003-4509-3012 ; 0000-0002-3730-0360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10379172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10379172$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wan, Qian</creatorcontrib><creatorcontrib>Cao, Yunkang</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Gao, Yiping</creatorcontrib><title>Deep Feature Contrasting for Industrial Image Anomaly Segmentation</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Industrial image anomaly segmentation is pivotal in ensuring the quality inspection of products within intelligent manufacturing systems. Recent research efforts have predominantly focused on deep learning-based approaches to address this challenge. However, unsupervised methods are often susceptible to distribution shifting, while supervised methods face significant obstacles due to imbalanced samples, resulting in suboptimal accuracy for anomaly segmentation. This article introduces a novel end-to-end deep feature contrasting (DFC) method aimed at enhancing segmentation accuracy in scenarios with limited supervision and pixel-level labeled anomalous images. DFC includes the introduction of a novel backbone feature contrasting pyramid (BFCP) featuring dual-model channels, which effectively captures the distribution of normality. In addition, a novel model-independent semantic feature contrasting (SFC) technique, implemented through self-contrasting, is proposed to train a discriminative segmenting head module (SHM) that addresses the challenge of sample unbalance. Furthermore, this article presents two types of SFC, namely, global and local, which are suggested to improve the overall performance. The proposed DFC method achieves F1 of 0.787 and 0.665 on two real-world industrial datasets (Kolektor Surface Defect Dataset (KSDD) and KSDD2) and is applied to a practical application of anomaly segmentation of printed circuit boards, demonstrating the superior anomaly segmenting performance.</description><subject>Anomaly segmentation</subject><subject>Circuit boards</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>deep feature contrasting (DFC)</subject><subject>Feature extraction</subject><subject>image anomaly</subject><subject>Image segmentation</subject><subject>Intelligent manufacturing systems</subject><subject>Neural networks</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Surface defects</subject><subject>Testing</subject><subject>Training</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL9PwzAQhS0EEqWwMzBEYk45-xL_GEuhEKmIgTJbJrlUqZqk2M7Q_55U7cD0lu_d6X2M3XOYcQ7maV18zAQInCFm2gC_YBOe5yo1UopLNgHgOjVZLq_ZTQhbAFAyUxP2_EK0T5bk4uApWfRd9C7Eptskde-ToquGEH3jdknRug0l865v3e6QfNGmpS662PTdLbuq3S7Q3Tmn7Hv5ul68p6vPt2IxX6WlMCKmGus8o1JiRVrlWhiqFKIkdACSV1roikw1TlBEKJ1WP5CVQghndAklapyyx9Pdve9_BwrRbvvBd-NLKwyKXGaojhScqNL3IXiq7d43rfMHy8EeTdnRlD2asmdTY-XhVGmI6B-OynAl8A_GAmNt</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wan, Qian</creator><creator>Cao, Yunkang</creator><creator>Gao, Liang</creator><creator>Li, Xinyu</creator><creator>Gao, Yiping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1485-0722</orcidid><orcidid>https://orcid.org/0000-0002-9517-7698</orcidid><orcidid>https://orcid.org/0000-0001-7619-6618</orcidid><orcidid>https://orcid.org/0000-0003-4509-3012</orcidid><orcidid>https://orcid.org/0000-0002-3730-0360</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Feature Contrasting for Industrial Image Anomaly Segmentation</title><author>Wan, Qian ; Cao, Yunkang ; Gao, Liang ; Li, Xinyu ; Gao, Yiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-83f54ec63de875829ed7336e3a0061d828de9d2027ee36a87b04c222a98c0c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomaly segmentation</topic><topic>Circuit boards</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>deep feature contrasting (DFC)</topic><topic>Feature extraction</topic><topic>image anomaly</topic><topic>Image segmentation</topic><topic>Intelligent manufacturing systems</topic><topic>Neural networks</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Surface defects</topic><topic>Testing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Qian</creatorcontrib><creatorcontrib>Cao, Yunkang</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Gao, Yiping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wan, Qian</au><au>Cao, Yunkang</au><au>Gao, Liang</au><au>Li, Xinyu</au><au>Gao, Yiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Feature Contrasting for Industrial Image Anomaly Segmentation</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Industrial image anomaly segmentation is pivotal in ensuring the quality inspection of products within intelligent manufacturing systems. Recent research efforts have predominantly focused on deep learning-based approaches to address this challenge. However, unsupervised methods are often susceptible to distribution shifting, while supervised methods face significant obstacles due to imbalanced samples, resulting in suboptimal accuracy for anomaly segmentation. This article introduces a novel end-to-end deep feature contrasting (DFC) method aimed at enhancing segmentation accuracy in scenarios with limited supervision and pixel-level labeled anomalous images. DFC includes the introduction of a novel backbone feature contrasting pyramid (BFCP) featuring dual-model channels, which effectively captures the distribution of normality. In addition, a novel model-independent semantic feature contrasting (SFC) technique, implemented through self-contrasting, is proposed to train a discriminative segmenting head module (SHM) that addresses the challenge of sample unbalance. Furthermore, this article presents two types of SFC, namely, global and local, which are suggested to improve the overall performance. The proposed DFC method achieves F1 of 0.787 and 0.665 on two real-world industrial datasets (Kolektor Surface Defect Dataset (KSDD) and KSDD2) and is applied to a practical application of anomaly segmentation of printed circuit boards, demonstrating the superior anomaly segmenting performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3348901</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1485-0722</orcidid><orcidid>https://orcid.org/0000-0002-9517-7698</orcidid><orcidid>https://orcid.org/0000-0001-7619-6618</orcidid><orcidid>https://orcid.org/0000-0003-4509-3012</orcidid><orcidid>https://orcid.org/0000-0002-3730-0360</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2023_3348901 |
source | IEEE Electronic Library (IEL) |
subjects | Anomaly segmentation Circuit boards Convolutional neural networks Datasets deep feature contrasting (DFC) Feature extraction image anomaly Image segmentation Intelligent manufacturing systems Neural networks Semantic segmentation Semantics Surface defects Testing Training |
title | Deep Feature Contrasting for Industrial Image Anomaly Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Feature%20Contrasting%20for%20Industrial%20Image%20Anomaly%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Wan,%20Qian&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3348901&rft_dat=%3Cproquest_RIE%3E2932564378%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932564378&rft_id=info:pmid/&rft_ieee_id=10379172&rfr_iscdi=true |