Deep Feature Contrasting for Industrial Image Anomaly Segmentation

Industrial image anomaly segmentation is pivotal in ensuring the quality inspection of products within intelligent manufacturing systems. Recent research efforts have predominantly focused on deep learning-based approaches to address this challenge. However, unsupervised methods are often susceptibl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-11
Hauptverfasser: Wan, Qian, Cao, Yunkang, Gao, Liang, Li, Xinyu, Gao, Yiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Wan, Qian
Cao, Yunkang
Gao, Liang
Li, Xinyu
Gao, Yiping
description Industrial image anomaly segmentation is pivotal in ensuring the quality inspection of products within intelligent manufacturing systems. Recent research efforts have predominantly focused on deep learning-based approaches to address this challenge. However, unsupervised methods are often susceptible to distribution shifting, while supervised methods face significant obstacles due to imbalanced samples, resulting in suboptimal accuracy for anomaly segmentation. This article introduces a novel end-to-end deep feature contrasting (DFC) method aimed at enhancing segmentation accuracy in scenarios with limited supervision and pixel-level labeled anomalous images. DFC includes the introduction of a novel backbone feature contrasting pyramid (BFCP) featuring dual-model channels, which effectively captures the distribution of normality. In addition, a novel model-independent semantic feature contrasting (SFC) technique, implemented through self-contrasting, is proposed to train a discriminative segmenting head module (SHM) that addresses the challenge of sample unbalance. Furthermore, this article presents two types of SFC, namely, global and local, which are suggested to improve the overall performance. The proposed DFC method achieves F1 of 0.787 and 0.665 on two real-world industrial datasets (Kolektor Surface Defect Dataset (KSDD) and KSDD2) and is applied to a practical application of anomaly segmentation of printed circuit boards, demonstrating the superior anomaly segmenting performance.
doi_str_mv 10.1109/TIM.2023.3348901
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2023_3348901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10379172</ieee_id><sourcerecordid>2932564378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-83f54ec63de875829ed7336e3a0061d828de9d2027ee36a87b04c222a98c0c383</originalsourceid><addsrcrecordid>eNpNkL9PwzAQhS0EEqWwMzBEYk45-xL_GEuhEKmIgTJbJrlUqZqk2M7Q_55U7cD0lu_d6X2M3XOYcQ7maV18zAQInCFm2gC_YBOe5yo1UopLNgHgOjVZLq_ZTQhbAFAyUxP2_EK0T5bk4uApWfRd9C7Eptskde-ToquGEH3jdknRug0l865v3e6QfNGmpS662PTdLbuq3S7Q3Tmn7Hv5ul68p6vPt2IxX6WlMCKmGus8o1JiRVrlWhiqFKIkdACSV1roikw1TlBEKJ1WP5CVQghndAklapyyx9Pdve9_BwrRbvvBd-NLKwyKXGaojhScqNL3IXiq7d43rfMHy8EeTdnRlD2asmdTY-XhVGmI6B-OynAl8A_GAmNt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932564378</pqid></control><display><type>article</type><title>Deep Feature Contrasting for Industrial Image Anomaly Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Wan, Qian ; Cao, Yunkang ; Gao, Liang ; Li, Xinyu ; Gao, Yiping</creator><creatorcontrib>Wan, Qian ; Cao, Yunkang ; Gao, Liang ; Li, Xinyu ; Gao, Yiping</creatorcontrib><description>Industrial image anomaly segmentation is pivotal in ensuring the quality inspection of products within intelligent manufacturing systems. Recent research efforts have predominantly focused on deep learning-based approaches to address this challenge. However, unsupervised methods are often susceptible to distribution shifting, while supervised methods face significant obstacles due to imbalanced samples, resulting in suboptimal accuracy for anomaly segmentation. This article introduces a novel end-to-end deep feature contrasting (DFC) method aimed at enhancing segmentation accuracy in scenarios with limited supervision and pixel-level labeled anomalous images. DFC includes the introduction of a novel backbone feature contrasting pyramid (BFCP) featuring dual-model channels, which effectively captures the distribution of normality. In addition, a novel model-independent semantic feature contrasting (SFC) technique, implemented through self-contrasting, is proposed to train a discriminative segmenting head module (SHM) that addresses the challenge of sample unbalance. Furthermore, this article presents two types of SFC, namely, global and local, which are suggested to improve the overall performance. The proposed DFC method achieves F1 of 0.787 and 0.665 on two real-world industrial datasets (Kolektor Surface Defect Dataset (KSDD) and KSDD2) and is applied to a practical application of anomaly segmentation of printed circuit boards, demonstrating the superior anomaly segmenting performance.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3348901</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomaly segmentation ; Circuit boards ; Convolutional neural networks ; Datasets ; deep feature contrasting (DFC) ; Feature extraction ; image anomaly ; Image segmentation ; Intelligent manufacturing systems ; Neural networks ; Semantic segmentation ; Semantics ; Surface defects ; Testing ; Training</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-83f54ec63de875829ed7336e3a0061d828de9d2027ee36a87b04c222a98c0c383</citedby><cites>FETCH-LOGICAL-c292t-83f54ec63de875829ed7336e3a0061d828de9d2027ee36a87b04c222a98c0c383</cites><orcidid>0000-0002-1485-0722 ; 0000-0002-9517-7698 ; 0000-0001-7619-6618 ; 0000-0003-4509-3012 ; 0000-0002-3730-0360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10379172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10379172$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wan, Qian</creatorcontrib><creatorcontrib>Cao, Yunkang</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Gao, Yiping</creatorcontrib><title>Deep Feature Contrasting for Industrial Image Anomaly Segmentation</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Industrial image anomaly segmentation is pivotal in ensuring the quality inspection of products within intelligent manufacturing systems. Recent research efforts have predominantly focused on deep learning-based approaches to address this challenge. However, unsupervised methods are often susceptible to distribution shifting, while supervised methods face significant obstacles due to imbalanced samples, resulting in suboptimal accuracy for anomaly segmentation. This article introduces a novel end-to-end deep feature contrasting (DFC) method aimed at enhancing segmentation accuracy in scenarios with limited supervision and pixel-level labeled anomalous images. DFC includes the introduction of a novel backbone feature contrasting pyramid (BFCP) featuring dual-model channels, which effectively captures the distribution of normality. In addition, a novel model-independent semantic feature contrasting (SFC) technique, implemented through self-contrasting, is proposed to train a discriminative segmenting head module (SHM) that addresses the challenge of sample unbalance. Furthermore, this article presents two types of SFC, namely, global and local, which are suggested to improve the overall performance. The proposed DFC method achieves F1 of 0.787 and 0.665 on two real-world industrial datasets (Kolektor Surface Defect Dataset (KSDD) and KSDD2) and is applied to a practical application of anomaly segmentation of printed circuit boards, demonstrating the superior anomaly segmenting performance.</description><subject>Anomaly segmentation</subject><subject>Circuit boards</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>deep feature contrasting (DFC)</subject><subject>Feature extraction</subject><subject>image anomaly</subject><subject>Image segmentation</subject><subject>Intelligent manufacturing systems</subject><subject>Neural networks</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Surface defects</subject><subject>Testing</subject><subject>Training</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL9PwzAQhS0EEqWwMzBEYk45-xL_GEuhEKmIgTJbJrlUqZqk2M7Q_55U7cD0lu_d6X2M3XOYcQ7maV18zAQInCFm2gC_YBOe5yo1UopLNgHgOjVZLq_ZTQhbAFAyUxP2_EK0T5bk4uApWfRd9C7Eptskde-ToquGEH3jdknRug0l865v3e6QfNGmpS662PTdLbuq3S7Q3Tmn7Hv5ul68p6vPt2IxX6WlMCKmGus8o1JiRVrlWhiqFKIkdACSV1roikw1TlBEKJ1WP5CVQghndAklapyyx9Pdve9_BwrRbvvBd-NLKwyKXGaojhScqNL3IXiq7d43rfMHy8EeTdnRlD2asmdTY-XhVGmI6B-OynAl8A_GAmNt</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wan, Qian</creator><creator>Cao, Yunkang</creator><creator>Gao, Liang</creator><creator>Li, Xinyu</creator><creator>Gao, Yiping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1485-0722</orcidid><orcidid>https://orcid.org/0000-0002-9517-7698</orcidid><orcidid>https://orcid.org/0000-0001-7619-6618</orcidid><orcidid>https://orcid.org/0000-0003-4509-3012</orcidid><orcidid>https://orcid.org/0000-0002-3730-0360</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Feature Contrasting for Industrial Image Anomaly Segmentation</title><author>Wan, Qian ; Cao, Yunkang ; Gao, Liang ; Li, Xinyu ; Gao, Yiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-83f54ec63de875829ed7336e3a0061d828de9d2027ee36a87b04c222a98c0c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomaly segmentation</topic><topic>Circuit boards</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>deep feature contrasting (DFC)</topic><topic>Feature extraction</topic><topic>image anomaly</topic><topic>Image segmentation</topic><topic>Intelligent manufacturing systems</topic><topic>Neural networks</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Surface defects</topic><topic>Testing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Qian</creatorcontrib><creatorcontrib>Cao, Yunkang</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Gao, Yiping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wan, Qian</au><au>Cao, Yunkang</au><au>Gao, Liang</au><au>Li, Xinyu</au><au>Gao, Yiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Feature Contrasting for Industrial Image Anomaly Segmentation</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Industrial image anomaly segmentation is pivotal in ensuring the quality inspection of products within intelligent manufacturing systems. Recent research efforts have predominantly focused on deep learning-based approaches to address this challenge. However, unsupervised methods are often susceptible to distribution shifting, while supervised methods face significant obstacles due to imbalanced samples, resulting in suboptimal accuracy for anomaly segmentation. This article introduces a novel end-to-end deep feature contrasting (DFC) method aimed at enhancing segmentation accuracy in scenarios with limited supervision and pixel-level labeled anomalous images. DFC includes the introduction of a novel backbone feature contrasting pyramid (BFCP) featuring dual-model channels, which effectively captures the distribution of normality. In addition, a novel model-independent semantic feature contrasting (SFC) technique, implemented through self-contrasting, is proposed to train a discriminative segmenting head module (SHM) that addresses the challenge of sample unbalance. Furthermore, this article presents two types of SFC, namely, global and local, which are suggested to improve the overall performance. The proposed DFC method achieves F1 of 0.787 and 0.665 on two real-world industrial datasets (Kolektor Surface Defect Dataset (KSDD) and KSDD2) and is applied to a practical application of anomaly segmentation of printed circuit boards, demonstrating the superior anomaly segmenting performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3348901</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1485-0722</orcidid><orcidid>https://orcid.org/0000-0002-9517-7698</orcidid><orcidid>https://orcid.org/0000-0001-7619-6618</orcidid><orcidid>https://orcid.org/0000-0003-4509-3012</orcidid><orcidid>https://orcid.org/0000-0002-3730-0360</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2023_3348901
source IEEE Electronic Library (IEL)
subjects Anomaly segmentation
Circuit boards
Convolutional neural networks
Datasets
deep feature contrasting (DFC)
Feature extraction
image anomaly
Image segmentation
Intelligent manufacturing systems
Neural networks
Semantic segmentation
Semantics
Surface defects
Testing
Training
title Deep Feature Contrasting for Industrial Image Anomaly Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Feature%20Contrasting%20for%20Industrial%20Image%20Anomaly%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Wan,%20Qian&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3348901&rft_dat=%3Cproquest_RIE%3E2932564378%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932564378&rft_id=info:pmid/&rft_ieee_id=10379172&rfr_iscdi=true