A Defective Bolt Detection Model With Attention-Based RoI Fusion and Cascaded Classification Network

In unmanned aerial vehicle (UAV) transmission line inspection images, the detection of defective small-size objects such as bolts on towers is important and challenging. Although using multiscale features of deep neural networks has improved the performance, it is still inadequate in mining fine-gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2023, Vol.72, p.1-11
Hauptverfasser: Jiao, Runhai, Fu, Zheyuan, Liu, Yanzhi, Zhang, Yunxin, Song, Yunhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 72
creator Jiao, Runhai
Fu, Zheyuan
Liu, Yanzhi
Zhang, Yunxin
Song, Yunhao
description In unmanned aerial vehicle (UAV) transmission line inspection images, the detection of defective small-size objects such as bolts on towers is important and challenging. Although using multiscale features of deep neural networks has improved the performance, it is still inadequate in mining fine-grained associations between multiscale features and dealing with the high similarity between normal and defective bolts. Therefore, this article proposes an improved defective bolt detection model mixed attention RoI fusion (MARF)-cascaded classification network (CCN), based on region of interest (RoI) feature fusion and CCN. First, a MARF network is built to adaptively compute fine-grained weights for features at different scales of the feature pyramid network (FPN) and enhances the difference between foreground and background. Second, CCN is designed to divide the original classification results into more easily identifiable categories based on morphological features, which are rectified via a secondary classifier to reduce false detection. Third, this article defines atypical defects based on occurrence frequency and utilizes Focal Loss to address the resulting imbalanced classification loss. Experiments show that MARF-CCN improves the average precision (AP) of defective bolts by 14.33%-84.40% compared with the commonly used models.
doi_str_mv 10.1109/TIM.2023.3318688
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2023_3318688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10262030</ieee_id><sourcerecordid>2878485578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-993baaabc40c7206758bf2fd97f34915a25a080b230c74d6e45aaa4f3797a27c3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xV_wxtoFCpRYkVMQYOY4tUkJcYhfEv8ehHZhO791zd9IDwCVGE4yRulkvVhOCCJ1QiiWX8giMcJ6LTHFOjsEIISwzxXJ-Cs5C2CCEBGdiBOopvLXOmth8WTjzbUwxDtF3cOVr28LXJr7BaYy2G5rZTAdbw2e_gPNdGCjd1bDQweg69YtWh9C4xui_C482fvv-_RycON0Ge3GoY_Ayv1sXD9ny6X5RTJeZIYrETClaaa0rw5ARBHGRy8oRVyvhKFM41yTXSKKK0DRnNbcsTzhzVCihiTB0DK73d7e9_9zZEMuN3_VdelkSKSSTSYhMFNpTpvch9NaV27750P1PiVE5uCyTy3JwWR5cppWr_Upjrf2HE04QRfQXpAVvdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878485578</pqid></control><display><type>article</type><title>A Defective Bolt Detection Model With Attention-Based RoI Fusion and Cascaded Classification Network</title><source>IEEE Electronic Library (IEL)</source><creator>Jiao, Runhai ; Fu, Zheyuan ; Liu, Yanzhi ; Zhang, Yunxin ; Song, Yunhao</creator><creatorcontrib>Jiao, Runhai ; Fu, Zheyuan ; Liu, Yanzhi ; Zhang, Yunxin ; Song, Yunhao</creatorcontrib><description>In unmanned aerial vehicle (UAV) transmission line inspection images, the detection of defective small-size objects such as bolts on towers is important and challenging. Although using multiscale features of deep neural networks has improved the performance, it is still inadequate in mining fine-grained associations between multiscale features and dealing with the high similarity between normal and defective bolts. Therefore, this article proposes an improved defective bolt detection model mixed attention RoI fusion (MARF)-cascaded classification network (CCN), based on region of interest (RoI) feature fusion and CCN. First, a MARF network is built to adaptively compute fine-grained weights for features at different scales of the feature pyramid network (FPN) and enhances the difference between foreground and background. Second, CCN is designed to divide the original classification results into more easily identifiable categories based on morphological features, which are rectified via a secondary classifier to reduce false detection. Third, this article defines atypical defects based on occurrence frequency and utilizes Focal Loss to address the resulting imbalanced classification loss. Experiments show that MARF-CCN improves the average precision (AP) of defective bolts by 14.33%-84.40% compared with the commonly used models.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3318688</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Atypical defect ; Bolts ; cascaded classification network (CCN) ; Classification ; deep neural network ; defective bolt detection ; Detectors ; Fasteners ; Feature extraction ; Inspection ; Pins ; Poles and towers ; Power systems ; region of interest (RoI) feature fusion ; Transmission lines ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-993baaabc40c7206758bf2fd97f34915a25a080b230c74d6e45aaa4f3797a27c3</citedby><cites>FETCH-LOGICAL-c292t-993baaabc40c7206758bf2fd97f34915a25a080b230c74d6e45aaa4f3797a27c3</cites><orcidid>0000-0003-3759-4175 ; 0009-0003-9103-1442 ; 0009-0006-6435-3827 ; 0009-0004-5626-642X ; 0009-0005-4984-0849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10262030$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10262030$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiao, Runhai</creatorcontrib><creatorcontrib>Fu, Zheyuan</creatorcontrib><creatorcontrib>Liu, Yanzhi</creatorcontrib><creatorcontrib>Zhang, Yunxin</creatorcontrib><creatorcontrib>Song, Yunhao</creatorcontrib><title>A Defective Bolt Detection Model With Attention-Based RoI Fusion and Cascaded Classification Network</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>In unmanned aerial vehicle (UAV) transmission line inspection images, the detection of defective small-size objects such as bolts on towers is important and challenging. Although using multiscale features of deep neural networks has improved the performance, it is still inadequate in mining fine-grained associations between multiscale features and dealing with the high similarity between normal and defective bolts. Therefore, this article proposes an improved defective bolt detection model mixed attention RoI fusion (MARF)-cascaded classification network (CCN), based on region of interest (RoI) feature fusion and CCN. First, a MARF network is built to adaptively compute fine-grained weights for features at different scales of the feature pyramid network (FPN) and enhances the difference between foreground and background. Second, CCN is designed to divide the original classification results into more easily identifiable categories based on morphological features, which are rectified via a secondary classifier to reduce false detection. Third, this article defines atypical defects based on occurrence frequency and utilizes Focal Loss to address the resulting imbalanced classification loss. Experiments show that MARF-CCN improves the average precision (AP) of defective bolts by 14.33%-84.40% compared with the commonly used models.</description><subject>Artificial neural networks</subject><subject>Atypical defect</subject><subject>Bolts</subject><subject>cascaded classification network (CCN)</subject><subject>Classification</subject><subject>deep neural network</subject><subject>defective bolt detection</subject><subject>Detectors</subject><subject>Fasteners</subject><subject>Feature extraction</subject><subject>Inspection</subject><subject>Pins</subject><subject>Poles and towers</subject><subject>Power systems</subject><subject>region of interest (RoI) feature fusion</subject><subject>Transmission lines</subject><subject>Unmanned aerial vehicles</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xV_wxtoFCpRYkVMQYOY4tUkJcYhfEv8ehHZhO791zd9IDwCVGE4yRulkvVhOCCJ1QiiWX8giMcJ6LTHFOjsEIISwzxXJ-Cs5C2CCEBGdiBOopvLXOmth8WTjzbUwxDtF3cOVr28LXJr7BaYy2G5rZTAdbw2e_gPNdGCjd1bDQweg69YtWh9C4xui_C482fvv-_RycON0Ge3GoY_Ayv1sXD9ny6X5RTJeZIYrETClaaa0rw5ARBHGRy8oRVyvhKFM41yTXSKKK0DRnNbcsTzhzVCihiTB0DK73d7e9_9zZEMuN3_VdelkSKSSTSYhMFNpTpvch9NaV27750P1PiVE5uCyTy3JwWR5cppWr_Upjrf2HE04QRfQXpAVvdg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Jiao, Runhai</creator><creator>Fu, Zheyuan</creator><creator>Liu, Yanzhi</creator><creator>Zhang, Yunxin</creator><creator>Song, Yunhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3759-4175</orcidid><orcidid>https://orcid.org/0009-0003-9103-1442</orcidid><orcidid>https://orcid.org/0009-0006-6435-3827</orcidid><orcidid>https://orcid.org/0009-0004-5626-642X</orcidid><orcidid>https://orcid.org/0009-0005-4984-0849</orcidid></search><sort><creationdate>2023</creationdate><title>A Defective Bolt Detection Model With Attention-Based RoI Fusion and Cascaded Classification Network</title><author>Jiao, Runhai ; Fu, Zheyuan ; Liu, Yanzhi ; Zhang, Yunxin ; Song, Yunhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-993baaabc40c7206758bf2fd97f34915a25a080b230c74d6e45aaa4f3797a27c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Atypical defect</topic><topic>Bolts</topic><topic>cascaded classification network (CCN)</topic><topic>Classification</topic><topic>deep neural network</topic><topic>defective bolt detection</topic><topic>Detectors</topic><topic>Fasteners</topic><topic>Feature extraction</topic><topic>Inspection</topic><topic>Pins</topic><topic>Poles and towers</topic><topic>Power systems</topic><topic>region of interest (RoI) feature fusion</topic><topic>Transmission lines</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Runhai</creatorcontrib><creatorcontrib>Fu, Zheyuan</creatorcontrib><creatorcontrib>Liu, Yanzhi</creatorcontrib><creatorcontrib>Zhang, Yunxin</creatorcontrib><creatorcontrib>Song, Yunhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiao, Runhai</au><au>Fu, Zheyuan</au><au>Liu, Yanzhi</au><au>Zhang, Yunxin</au><au>Song, Yunhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Defective Bolt Detection Model With Attention-Based RoI Fusion and Cascaded Classification Network</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>In unmanned aerial vehicle (UAV) transmission line inspection images, the detection of defective small-size objects such as bolts on towers is important and challenging. Although using multiscale features of deep neural networks has improved the performance, it is still inadequate in mining fine-grained associations between multiscale features and dealing with the high similarity between normal and defective bolts. Therefore, this article proposes an improved defective bolt detection model mixed attention RoI fusion (MARF)-cascaded classification network (CCN), based on region of interest (RoI) feature fusion and CCN. First, a MARF network is built to adaptively compute fine-grained weights for features at different scales of the feature pyramid network (FPN) and enhances the difference between foreground and background. Second, CCN is designed to divide the original classification results into more easily identifiable categories based on morphological features, which are rectified via a secondary classifier to reduce false detection. Third, this article defines atypical defects based on occurrence frequency and utilizes Focal Loss to address the resulting imbalanced classification loss. Experiments show that MARF-CCN improves the average precision (AP) of defective bolts by 14.33%-84.40% compared with the commonly used models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3318688</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3759-4175</orcidid><orcidid>https://orcid.org/0009-0003-9103-1442</orcidid><orcidid>https://orcid.org/0009-0006-6435-3827</orcidid><orcidid>https://orcid.org/0009-0004-5626-642X</orcidid><orcidid>https://orcid.org/0009-0005-4984-0849</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-11
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2023_3318688
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Atypical defect
Bolts
cascaded classification network (CCN)
Classification
deep neural network
defective bolt detection
Detectors
Fasteners
Feature extraction
Inspection
Pins
Poles and towers
Power systems
region of interest (RoI) feature fusion
Transmission lines
Unmanned aerial vehicles
title A Defective Bolt Detection Model With Attention-Based RoI Fusion and Cascaded Classification Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Defective%20Bolt%20Detection%20Model%20With%20Attention-Based%20RoI%20Fusion%20and%20Cascaded%20Classification%20Network&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Jiao,%20Runhai&rft.date=2023&rft.volume=72&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3318688&rft_dat=%3Cproquest_RIE%3E2878485578%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878485578&rft_id=info:pmid/&rft_ieee_id=10262030&rfr_iscdi=true