Synchro-Reassigned Extracting Transform: An Effective Tool for Rotating Machinery Fault Diagnosis Under Varying Speed Condition
Time-frequency analysis (TFA) techniques offer valuable insights into the dynamic characteristics of nonstationary signals, making them suitable for diagnosing faults in rotating machinery operating under variable speed conditions. However, extracting meaningful features from time-frequency represen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2023, Vol.72, p.1-16 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 72 |
creator | Wu, Hongan Lv, Yong Yuan, Rui Yang, Xingkai Feng, Ke Zhu, Weihang |
description | Time-frequency analysis (TFA) techniques offer valuable insights into the dynamic characteristics of nonstationary signals, making them suitable for diagnosing faults in rotating machinery operating under variable speed conditions. However, extracting meaningful features from time-frequency representations (TFRs) faces challenges due to energy spreading caused by complex modes and background noise. To address this issue, this article introduces a novel technique called the synchro-reassigned extracting transform (SRET). The SRET uses instantaneous frequency (IF) and group delay (GD) operators to extract and reassign energy coefficients simultaneously in both the frequency and time directions, enhancing the sharpness of TFRs. Theoretical analysis reveals the limitations of the synchroextracting transform (SET) when analyzing signals with both slowly and rapidly varying features, which the proposed SRET effectively overcomes. To optimize the computational efficiency, this article presents a discrete implementation algorithm for SRET. The effectiveness of SRET in analyzing time-varying signals and diagnosing bearing faults is demonstrated through simulations and two sets of bearing vibration data. In addition, the application of SRET in processing vibration signals from a wind turbine gearbox highlights its potential for fault diagnosis in rotating machinery. |
doi_str_mv | 10.1109/TIM.2023.3316705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2023_3316705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10254611</ieee_id><sourcerecordid>2872464651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-e8228a4e3c0c913da133e4a3cd6031a2834c49756c58bdc4b4c52d03d5a4c0853</originalsourceid><addsrcrecordid>eNpNkEtPAjEURhujiYjuXbho4nqw75lxRxCUBGLCw21TOh0ogRbbwcjKv24RFq5u8uV8994cAO4x6mCMyqfZcNwhiNAOpVjkiF-AFuY8z0ohyCVoIYSLrGRcXIObGNcIoVywvAV-pgenV8FnE6NitEtnKtj_boLSjXVLOAvKxdqH7TPsOtiva5PyLwNn3m9gyuHEN-qPHCu9ss6EAxyo_aaBL1YtnY82wrmrTIAfKhyO3HRn0omed5VtrHe34KpWm2juzrMN5oP-rPeWjd5fh73uKNOkJE1mCkIKxQzVSJeYVgpTapiiuhKIYkUKyjQrcy40LxaVZgumOakQrbhiGhWctsHjae8u-M-9iY1c-31w6aQkRU6YYILjRKETpYOPMZha7oLdps8lRvKoWSbN8qhZnjWnysOpYo0x_3DCmcCY_gIl6noV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872464651</pqid></control><display><type>article</type><title>Synchro-Reassigned Extracting Transform: An Effective Tool for Rotating Machinery Fault Diagnosis Under Varying Speed Condition</title><source>IEEE Xplore</source><creator>Wu, Hongan ; Lv, Yong ; Yuan, Rui ; Yang, Xingkai ; Feng, Ke ; Zhu, Weihang</creator><creatorcontrib>Wu, Hongan ; Lv, Yong ; Yuan, Rui ; Yang, Xingkai ; Feng, Ke ; Zhu, Weihang</creatorcontrib><description>Time-frequency analysis (TFA) techniques offer valuable insights into the dynamic characteristics of nonstationary signals, making them suitable for diagnosing faults in rotating machinery operating under variable speed conditions. However, extracting meaningful features from time-frequency representations (TFRs) faces challenges due to energy spreading caused by complex modes and background noise. To address this issue, this article introduces a novel technique called the synchro-reassigned extracting transform (SRET). The SRET uses instantaneous frequency (IF) and group delay (GD) operators to extract and reassign energy coefficients simultaneously in both the frequency and time directions, enhancing the sharpness of TFRs. Theoretical analysis reveals the limitations of the synchroextracting transform (SET) when analyzing signals with both slowly and rapidly varying features, which the proposed SRET effectively overcomes. To optimize the computational efficiency, this article presents a discrete implementation algorithm for SRET. The effectiveness of SRET in analyzing time-varying signals and diagnosing bearing faults is demonstrated through simulations and two sets of bearing vibration data. In addition, the application of SRET in processing vibration signals from a wind turbine gearbox highlights its potential for fault diagnosis in rotating machinery.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3316705</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Background noise ; Dynamic characteristics ; Fault diagnosis ; Feature extraction ; Frequency modulation ; Gearboxes ; Group delay ; Harmonic analysis ; Instantaneous frequency (IF) ; Oscillators ; reassignment ; Rotating machinery ; synchroextracting transform (SET) ; Time-frequency analysis ; time’frequency analysis (TFA) ; Transforms ; Transient analysis ; Vibration ; Wind turbines</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-e8228a4e3c0c913da133e4a3cd6031a2834c49756c58bdc4b4c52d03d5a4c0853</citedby><cites>FETCH-LOGICAL-c292t-e8228a4e3c0c913da133e4a3cd6031a2834c49756c58bdc4b4c52d03d5a4c0853</cites><orcidid>0000-0002-6092-1608 ; 0000-0001-9758-5292 ; 0000-0003-2659-716X ; 0000-0003-2338-5161 ; 0000-0002-2541-7561 ; 0000-0003-4063-7834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10254611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27927,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10254611$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Hongan</creatorcontrib><creatorcontrib>Lv, Yong</creatorcontrib><creatorcontrib>Yuan, Rui</creatorcontrib><creatorcontrib>Yang, Xingkai</creatorcontrib><creatorcontrib>Feng, Ke</creatorcontrib><creatorcontrib>Zhu, Weihang</creatorcontrib><title>Synchro-Reassigned Extracting Transform: An Effective Tool for Rotating Machinery Fault Diagnosis Under Varying Speed Condition</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Time-frequency analysis (TFA) techniques offer valuable insights into the dynamic characteristics of nonstationary signals, making them suitable for diagnosing faults in rotating machinery operating under variable speed conditions. However, extracting meaningful features from time-frequency representations (TFRs) faces challenges due to energy spreading caused by complex modes and background noise. To address this issue, this article introduces a novel technique called the synchro-reassigned extracting transform (SRET). The SRET uses instantaneous frequency (IF) and group delay (GD) operators to extract and reassign energy coefficients simultaneously in both the frequency and time directions, enhancing the sharpness of TFRs. Theoretical analysis reveals the limitations of the synchroextracting transform (SET) when analyzing signals with both slowly and rapidly varying features, which the proposed SRET effectively overcomes. To optimize the computational efficiency, this article presents a discrete implementation algorithm for SRET. The effectiveness of SRET in analyzing time-varying signals and diagnosing bearing faults is demonstrated through simulations and two sets of bearing vibration data. In addition, the application of SRET in processing vibration signals from a wind turbine gearbox highlights its potential for fault diagnosis in rotating machinery.</description><subject>Algorithms</subject><subject>Background noise</subject><subject>Dynamic characteristics</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Frequency modulation</subject><subject>Gearboxes</subject><subject>Group delay</subject><subject>Harmonic analysis</subject><subject>Instantaneous frequency (IF)</subject><subject>Oscillators</subject><subject>reassignment</subject><subject>Rotating machinery</subject><subject>synchroextracting transform (SET)</subject><subject>Time-frequency analysis</subject><subject>time’frequency analysis (TFA)</subject><subject>Transforms</subject><subject>Transient analysis</subject><subject>Vibration</subject><subject>Wind turbines</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPAjEURhujiYjuXbho4nqw75lxRxCUBGLCw21TOh0ogRbbwcjKv24RFq5u8uV8994cAO4x6mCMyqfZcNwhiNAOpVjkiF-AFuY8z0ohyCVoIYSLrGRcXIObGNcIoVywvAV-pgenV8FnE6NitEtnKtj_boLSjXVLOAvKxdqH7TPsOtiva5PyLwNn3m9gyuHEN-qPHCu9ss6EAxyo_aaBL1YtnY82wrmrTIAfKhyO3HRn0omed5VtrHe34KpWm2juzrMN5oP-rPeWjd5fh73uKNOkJE1mCkIKxQzVSJeYVgpTapiiuhKIYkUKyjQrcy40LxaVZgumOakQrbhiGhWctsHjae8u-M-9iY1c-31w6aQkRU6YYILjRKETpYOPMZha7oLdps8lRvKoWSbN8qhZnjWnysOpYo0x_3DCmcCY_gIl6noV</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Wu, Hongan</creator><creator>Lv, Yong</creator><creator>Yuan, Rui</creator><creator>Yang, Xingkai</creator><creator>Feng, Ke</creator><creator>Zhu, Weihang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6092-1608</orcidid><orcidid>https://orcid.org/0000-0001-9758-5292</orcidid><orcidid>https://orcid.org/0000-0003-2659-716X</orcidid><orcidid>https://orcid.org/0000-0003-2338-5161</orcidid><orcidid>https://orcid.org/0000-0002-2541-7561</orcidid><orcidid>https://orcid.org/0000-0003-4063-7834</orcidid></search><sort><creationdate>2023</creationdate><title>Synchro-Reassigned Extracting Transform: An Effective Tool for Rotating Machinery Fault Diagnosis Under Varying Speed Condition</title><author>Wu, Hongan ; Lv, Yong ; Yuan, Rui ; Yang, Xingkai ; Feng, Ke ; Zhu, Weihang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-e8228a4e3c0c913da133e4a3cd6031a2834c49756c58bdc4b4c52d03d5a4c0853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Background noise</topic><topic>Dynamic characteristics</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Frequency modulation</topic><topic>Gearboxes</topic><topic>Group delay</topic><topic>Harmonic analysis</topic><topic>Instantaneous frequency (IF)</topic><topic>Oscillators</topic><topic>reassignment</topic><topic>Rotating machinery</topic><topic>synchroextracting transform (SET)</topic><topic>Time-frequency analysis</topic><topic>time’frequency analysis (TFA)</topic><topic>Transforms</topic><topic>Transient analysis</topic><topic>Vibration</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hongan</creatorcontrib><creatorcontrib>Lv, Yong</creatorcontrib><creatorcontrib>Yuan, Rui</creatorcontrib><creatorcontrib>Yang, Xingkai</creatorcontrib><creatorcontrib>Feng, Ke</creatorcontrib><creatorcontrib>Zhu, Weihang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Hongan</au><au>Lv, Yong</au><au>Yuan, Rui</au><au>Yang, Xingkai</au><au>Feng, Ke</au><au>Zhu, Weihang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchro-Reassigned Extracting Transform: An Effective Tool for Rotating Machinery Fault Diagnosis Under Varying Speed Condition</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Time-frequency analysis (TFA) techniques offer valuable insights into the dynamic characteristics of nonstationary signals, making them suitable for diagnosing faults in rotating machinery operating under variable speed conditions. However, extracting meaningful features from time-frequency representations (TFRs) faces challenges due to energy spreading caused by complex modes and background noise. To address this issue, this article introduces a novel technique called the synchro-reassigned extracting transform (SRET). The SRET uses instantaneous frequency (IF) and group delay (GD) operators to extract and reassign energy coefficients simultaneously in both the frequency and time directions, enhancing the sharpness of TFRs. Theoretical analysis reveals the limitations of the synchroextracting transform (SET) when analyzing signals with both slowly and rapidly varying features, which the proposed SRET effectively overcomes. To optimize the computational efficiency, this article presents a discrete implementation algorithm for SRET. The effectiveness of SRET in analyzing time-varying signals and diagnosing bearing faults is demonstrated through simulations and two sets of bearing vibration data. In addition, the application of SRET in processing vibration signals from a wind turbine gearbox highlights its potential for fault diagnosis in rotating machinery.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3316705</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6092-1608</orcidid><orcidid>https://orcid.org/0000-0001-9758-5292</orcidid><orcidid>https://orcid.org/0000-0003-2659-716X</orcidid><orcidid>https://orcid.org/0000-0003-2338-5161</orcidid><orcidid>https://orcid.org/0000-0002-2541-7561</orcidid><orcidid>https://orcid.org/0000-0003-4063-7834</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-16 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2023_3316705 |
source | IEEE Xplore |
subjects | Algorithms Background noise Dynamic characteristics Fault diagnosis Feature extraction Frequency modulation Gearboxes Group delay Harmonic analysis Instantaneous frequency (IF) Oscillators reassignment Rotating machinery synchroextracting transform (SET) Time-frequency analysis time’frequency analysis (TFA) Transforms Transient analysis Vibration Wind turbines |
title | Synchro-Reassigned Extracting Transform: An Effective Tool for Rotating Machinery Fault Diagnosis Under Varying Speed Condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchro-Reassigned%20Extracting%20Transform:%20An%20Effective%20Tool%20for%20Rotating%20Machinery%20Fault%20Diagnosis%20Under%20Varying%20Speed%20Condition&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Wu,%20Hongan&rft.date=2023&rft.volume=72&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3316705&rft_dat=%3Cproquest_RIE%3E2872464651%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872464651&rft_id=info:pmid/&rft_ieee_id=10254611&rfr_iscdi=true |