A Depth-Adaptive Filtering Method for Effective GPR Tree Roots Detection in Tropical Area
This study presents a technique for processing Step-frequency continuous wave (SFCW) ground penetrating radar (GPR) data to detect tree roots. SFCW GPR is portable and enables precise control of energy levels, balancing depth and resolution trade-offs. However, the high-frequency components of the t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 72 |
creator | Luo, Wenhao Lee, Yee Hui Yusof, Mohamed Lokman Mohd Yucel, Abdulkadir C. |
description | This study presents a technique for processing Step-frequency continuous wave (SFCW) ground penetrating radar (GPR) data to detect tree roots. SFCW GPR is portable and enables precise control of energy levels, balancing depth and resolution trade-offs. However, the high-frequency components of the transmission band suffers from poor penetrating capability and generates noise that interferes with root detection. The proposed time-frequency filtering technique uses a short-time Fourier transform (STFT) to track changes in frequency spectrum density over time. To obtain the filter window, a weighted linear regression (WLR) method is used. By adopting a conversion method that is a variant of the chirp Z-Transform (CZT), the time-frequency window filters out frequency samples that are not of interest when doing the frequency-to-time domain data conversion. The proposed depth-adaptive filter window can self-adjust to different scenarios, making it independent of soil information and effectively determines subsurface tree roots. The technique is successfully validated using SFCW GPR data from actual sites in a tropical area with different soil moisture levels, and the two-dimensional (2D) radar map of subsurface root systems is highly improved compared to existing methods. |
doi_str_mv | 10.1109/TIM.2023.3282654 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2023_3282654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10143700</ieee_id><sourcerecordid>2837133504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-79e875bb272ca9a85386ccbb5ba3df0f244765d9309cd6361955eeccac1ac1e73</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx4CnrfmO5vjUtsqtCilHjyFbHbWbqnNmk0F_3u3tgdhYGDee_Pgh9AtJSNKiXlYPS9GjDA-4ixnSoozNKBS6swoxc7RgBCaZ0ZIdYmuum5DCNFK6AF6L_AjtGmdFZVrU_MNeNpsE8Rm94EXkNahwnWIeFLX4P_k2esSryIAXoaQuj6cDkLY4WbX30PbeLfFRQR3jS5qt-3g5rSH6G06WY2fsvnL7HlczDPPhEyZNpBrWZZMM--MyyXPlfdlKUvHq5rUTAitZGU4Mb5SXFEjJYD3ztN-QPMhuj_-bWP42kOX7Cbs466vtCznmnIuiehd5OjyMXRdhNq2sfl08cdSYg8AbQ_QHgDaE8A-cneMNADwz04F14TwX_gka3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837133504</pqid></control><display><type>article</type><title>A Depth-Adaptive Filtering Method for Effective GPR Tree Roots Detection in Tropical Area</title><source>IEEE Electronic Library (IEL)</source><creator>Luo, Wenhao ; Lee, Yee Hui ; Yusof, Mohamed Lokman Mohd ; Yucel, Abdulkadir C.</creator><creatorcontrib>Luo, Wenhao ; Lee, Yee Hui ; Yusof, Mohamed Lokman Mohd ; Yucel, Abdulkadir C.</creatorcontrib><description>This study presents a technique for processing Step-frequency continuous wave (SFCW) ground penetrating radar (GPR) data to detect tree roots. SFCW GPR is portable and enables precise control of energy levels, balancing depth and resolution trade-offs. However, the high-frequency components of the transmission band suffers from poor penetrating capability and generates noise that interferes with root detection. The proposed time-frequency filtering technique uses a short-time Fourier transform (STFT) to track changes in frequency spectrum density over time. To obtain the filter window, a weighted linear regression (WLR) method is used. By adopting a conversion method that is a variant of the chirp Z-Transform (CZT), the time-frequency window filters out frequency samples that are not of interest when doing the frequency-to-time domain data conversion. The proposed depth-adaptive filter window can self-adjust to different scenarios, making it independent of soil information and effectively determines subsurface tree roots. The technique is successfully validated using SFCW GPR data from actual sites in a tropical area with different soil moisture levels, and the two-dimensional (2D) radar map of subsurface root systems is highly improved compared to existing methods.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3282654</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Attenuation ; Chirp Z-Transform (CZT) ; Continuous radiation ; Data conversion ; depth-adaptive ; Energy levels ; Filtering ; Fourier transforms ; Frequency conversion ; Frequency spectrum ; Ground penetrating radar ; ground penetrating radar (GPR) ; Moisture effects ; Noise generation ; Radar maps ; Roots ; self-adjust ; short-time Fourier transform (STFT) ; Soil ; Soil moisture ; step-frequency continuous wave (SFCW) ; subsurface root systems ; Time-domain analysis ; Time-frequency analysis ; time-frequency window ; tropical area ; Vegetation ; weighted linear regression (WLR) ; Z transforms</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-79e875bb272ca9a85386ccbb5ba3df0f244765d9309cd6361955eeccac1ac1e73</cites><orcidid>0000-0002-0442-6338 ; 0000-0001-9920-4043 ; 0000-0002-2771-4877 ; 0000-0001-6452-9606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10143700$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10143700$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Luo, Wenhao</creatorcontrib><creatorcontrib>Lee, Yee Hui</creatorcontrib><creatorcontrib>Yusof, Mohamed Lokman Mohd</creatorcontrib><creatorcontrib>Yucel, Abdulkadir C.</creatorcontrib><title>A Depth-Adaptive Filtering Method for Effective GPR Tree Roots Detection in Tropical Area</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This study presents a technique for processing Step-frequency continuous wave (SFCW) ground penetrating radar (GPR) data to detect tree roots. SFCW GPR is portable and enables precise control of energy levels, balancing depth and resolution trade-offs. However, the high-frequency components of the transmission band suffers from poor penetrating capability and generates noise that interferes with root detection. The proposed time-frequency filtering technique uses a short-time Fourier transform (STFT) to track changes in frequency spectrum density over time. To obtain the filter window, a weighted linear regression (WLR) method is used. By adopting a conversion method that is a variant of the chirp Z-Transform (CZT), the time-frequency window filters out frequency samples that are not of interest when doing the frequency-to-time domain data conversion. The proposed depth-adaptive filter window can self-adjust to different scenarios, making it independent of soil information and effectively determines subsurface tree roots. The technique is successfully validated using SFCW GPR data from actual sites in a tropical area with different soil moisture levels, and the two-dimensional (2D) radar map of subsurface root systems is highly improved compared to existing methods.</description><subject>Adaptive filters</subject><subject>Attenuation</subject><subject>Chirp Z-Transform (CZT)</subject><subject>Continuous radiation</subject><subject>Data conversion</subject><subject>depth-adaptive</subject><subject>Energy levels</subject><subject>Filtering</subject><subject>Fourier transforms</subject><subject>Frequency conversion</subject><subject>Frequency spectrum</subject><subject>Ground penetrating radar</subject><subject>ground penetrating radar (GPR)</subject><subject>Moisture effects</subject><subject>Noise generation</subject><subject>Radar maps</subject><subject>Roots</subject><subject>self-adjust</subject><subject>short-time Fourier transform (STFT)</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>step-frequency continuous wave (SFCW)</subject><subject>subsurface root systems</subject><subject>Time-domain analysis</subject><subject>Time-frequency analysis</subject><subject>time-frequency window</subject><subject>tropical area</subject><subject>Vegetation</subject><subject>weighted linear regression (WLR)</subject><subject>Z transforms</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3Dx4CnrfmO5vjUtsqtCilHjyFbHbWbqnNmk0F_3u3tgdhYGDee_Pgh9AtJSNKiXlYPS9GjDA-4ixnSoozNKBS6swoxc7RgBCaZ0ZIdYmuum5DCNFK6AF6L_AjtGmdFZVrU_MNeNpsE8Rm94EXkNahwnWIeFLX4P_k2esSryIAXoaQuj6cDkLY4WbX30PbeLfFRQR3jS5qt-3g5rSH6G06WY2fsvnL7HlczDPPhEyZNpBrWZZMM--MyyXPlfdlKUvHq5rUTAitZGU4Mb5SXFEjJYD3ztN-QPMhuj_-bWP42kOX7Cbs466vtCznmnIuiehd5OjyMXRdhNq2sfl08cdSYg8AbQ_QHgDaE8A-cneMNADwz04F14TwX_gka3M</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Luo, Wenhao</creator><creator>Lee, Yee Hui</creator><creator>Yusof, Mohamed Lokman Mohd</creator><creator>Yucel, Abdulkadir C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0442-6338</orcidid><orcidid>https://orcid.org/0000-0001-9920-4043</orcidid><orcidid>https://orcid.org/0000-0002-2771-4877</orcidid><orcidid>https://orcid.org/0000-0001-6452-9606</orcidid></search><sort><creationdate>20230101</creationdate><title>A Depth-Adaptive Filtering Method for Effective GPR Tree Roots Detection in Tropical Area</title><author>Luo, Wenhao ; Lee, Yee Hui ; Yusof, Mohamed Lokman Mohd ; Yucel, Abdulkadir C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-79e875bb272ca9a85386ccbb5ba3df0f244765d9309cd6361955eeccac1ac1e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive filters</topic><topic>Attenuation</topic><topic>Chirp Z-Transform (CZT)</topic><topic>Continuous radiation</topic><topic>Data conversion</topic><topic>depth-adaptive</topic><topic>Energy levels</topic><topic>Filtering</topic><topic>Fourier transforms</topic><topic>Frequency conversion</topic><topic>Frequency spectrum</topic><topic>Ground penetrating radar</topic><topic>ground penetrating radar (GPR)</topic><topic>Moisture effects</topic><topic>Noise generation</topic><topic>Radar maps</topic><topic>Roots</topic><topic>self-adjust</topic><topic>short-time Fourier transform (STFT)</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>step-frequency continuous wave (SFCW)</topic><topic>subsurface root systems</topic><topic>Time-domain analysis</topic><topic>Time-frequency analysis</topic><topic>time-frequency window</topic><topic>tropical area</topic><topic>Vegetation</topic><topic>weighted linear regression (WLR)</topic><topic>Z transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Wenhao</creatorcontrib><creatorcontrib>Lee, Yee Hui</creatorcontrib><creatorcontrib>Yusof, Mohamed Lokman Mohd</creatorcontrib><creatorcontrib>Yucel, Abdulkadir C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luo, Wenhao</au><au>Lee, Yee Hui</au><au>Yusof, Mohamed Lokman Mohd</au><au>Yucel, Abdulkadir C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Depth-Adaptive Filtering Method for Effective GPR Tree Roots Detection in Tropical Area</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This study presents a technique for processing Step-frequency continuous wave (SFCW) ground penetrating radar (GPR) data to detect tree roots. SFCW GPR is portable and enables precise control of energy levels, balancing depth and resolution trade-offs. However, the high-frequency components of the transmission band suffers from poor penetrating capability and generates noise that interferes with root detection. The proposed time-frequency filtering technique uses a short-time Fourier transform (STFT) to track changes in frequency spectrum density over time. To obtain the filter window, a weighted linear regression (WLR) method is used. By adopting a conversion method that is a variant of the chirp Z-Transform (CZT), the time-frequency window filters out frequency samples that are not of interest when doing the frequency-to-time domain data conversion. The proposed depth-adaptive filter window can self-adjust to different scenarios, making it independent of soil information and effectively determines subsurface tree roots. The technique is successfully validated using SFCW GPR data from actual sites in a tropical area with different soil moisture levels, and the two-dimensional (2D) radar map of subsurface root systems is highly improved compared to existing methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3282654</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0442-6338</orcidid><orcidid>https://orcid.org/0000-0001-9920-4043</orcidid><orcidid>https://orcid.org/0000-0002-2771-4877</orcidid><orcidid>https://orcid.org/0000-0001-6452-9606</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2023_3282654 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive filters Attenuation Chirp Z-Transform (CZT) Continuous radiation Data conversion depth-adaptive Energy levels Filtering Fourier transforms Frequency conversion Frequency spectrum Ground penetrating radar ground penetrating radar (GPR) Moisture effects Noise generation Radar maps Roots self-adjust short-time Fourier transform (STFT) Soil Soil moisture step-frequency continuous wave (SFCW) subsurface root systems Time-domain analysis Time-frequency analysis time-frequency window tropical area Vegetation weighted linear regression (WLR) Z transforms |
title | A Depth-Adaptive Filtering Method for Effective GPR Tree Roots Detection in Tropical Area |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Depth-Adaptive%20Filtering%20Method%20for%20Effective%20GPR%20Tree%20Roots%20Detection%20in%20Tropical%20Area&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Luo,%20Wenhao&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3282654&rft_dat=%3Cproquest_RIE%3E2837133504%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837133504&rft_id=info:pmid/&rft_ieee_id=10143700&rfr_iscdi=true |