A Ferromagnetic Particle Sensor Based on a Honeycomb Permanent Magnet for High Precision and High Throughput
A multichannel passive ferromagnetic particle inductive sensor is proposed, which is mainly composed of a honeycomb permanent magnet and a set of coils. The honeycomb magnet generates the same high gradient static magnetic field in each channel (a total of seven channels, six surrounding, and one ce...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-9 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 71 |
creator | Yuan, Zheng Feng, Song Chen, Shanshan Jing, Weixuan Zhao, Libo Jiang, Zhuangde |
description | A multichannel passive ferromagnetic particle inductive sensor is proposed, which is mainly composed of a honeycomb permanent magnet and a set of coils. The honeycomb magnet generates the same high gradient static magnetic field in each channel (a total of seven channels, six surrounding, and one center), which helps improve the sensor's throughput while maintain high precision. An induced voltage model that includes most of the structural design parameters is proposed, which provides theoretical support for sensor optimization. The correctness of this model is verified by finite element simulation and experiments. The experimental results show that the detection performance of each channel is almost the same, which is expected to be further improved by setting a reference channel. Moreover, the sensor can detect 70 \mu \text{m} iron particles in a single channel of diameter 4 mm. The proposed sensor can reduce the influence of magnetic field radial uniformity on the induced signals, improve the detection precision, and achieve high throughput (about a 14-fold increase in throughput compared to our previous work). Its high precision and high throughput favor lots of lube oil detection. |
doi_str_mv | 10.1109/TIM.2022.3216401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2022_3216401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9926164</ieee_id><sourcerecordid>2734389448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-984d222c8a6756c83013d7b34a8673b41923d392e23cc3b579c649efbd0325cb3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKd3wUvAc2d-NWmOU5wbbDhwnkOavm4dazOT9rD_3s4OT1947_N9Dz4IPVIyoZTol81iNWGEsQlnVApCr9CIpqlKtJTsGo0IoVmiRSpv0V2Me0KIkkKN0GGKZxCCr-22gbZyeG1DHwfAX9BEH_CrjVBg32CL576Bk_N1jtcQattA0-LVXw-XPTmvtju8DuCqWJ35phhGm13w3XZ37Np7dFPaQ4SHS47R9-x98zZPlp8fi7fpMnFM0zbRmSgYYy6zUqXSZZxQXqicC5tJxXNBNeMF1wwYd47nqdJOCg1lXhDOUpfzMXoe7h6D_-kgtmbvu9D0Lw1TXPBMC5H1FBkoF3yMAUpzDFVtw8lQYs5OTe_UnJ2ai9O-8jRUKgD4x7Vmst_zX_21cZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734389448</pqid></control><display><type>article</type><title>A Ferromagnetic Particle Sensor Based on a Honeycomb Permanent Magnet for High Precision and High Throughput</title><source>IEEE Electronic Library (IEL)</source><creator>Yuan, Zheng ; Feng, Song ; Chen, Shanshan ; Jing, Weixuan ; Zhao, Libo ; Jiang, Zhuangde</creator><creatorcontrib>Yuan, Zheng ; Feng, Song ; Chen, Shanshan ; Jing, Weixuan ; Zhao, Libo ; Jiang, Zhuangde</creatorcontrib><description>A multichannel passive ferromagnetic particle inductive sensor is proposed, which is mainly composed of a honeycomb permanent magnet and a set of coils. The honeycomb magnet generates the same high gradient static magnetic field in each channel (a total of seven channels, six surrounding, and one center), which helps improve the sensor's throughput while maintain high precision. An induced voltage model that includes most of the structural design parameters is proposed, which provides theoretical support for sensor optimization. The correctness of this model is verified by finite element simulation and experiments. The experimental results show that the detection performance of each channel is almost the same, which is expected to be further improved by setting a reference channel. Moreover, the sensor can detect 70 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> iron particles in a single channel of diameter 4 mm. The proposed sensor can reduce the influence of magnetic field radial uniformity on the induced signals, improve the detection precision, and achieve high throughput (about a 14-fold increase in throughput compared to our previous work). Its high precision and high throughput favor lots of lube oil detection.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3216401</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coils ; Design parameters ; Ferromagnetism ; Finite element method ; High precision ; high throughput ; honeycomb permanent magnet ; Induced voltage ; induced voltage model ; Inductive sensing devices ; Iron ; Magnetic fields ; Magnetic flux ; Magnetism ; Magnetostatics ; Mathematical models ; Optimization ; passive ferromagnetic particle sensor ; Permanent magnets ; Sensors ; Structural design ; Throughput</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-984d222c8a6756c83013d7b34a8673b41923d392e23cc3b579c649efbd0325cb3</citedby><cites>FETCH-LOGICAL-c291t-984d222c8a6756c83013d7b34a8673b41923d392e23cc3b579c649efbd0325cb3</cites><orcidid>0000-0001-8968-790X ; 0000-0002-9320-930X ; 0000-0001-6101-8173 ; 0000-0001-5557-2653 ; 0000-0001-5124-3959 ; 0000-0002-9347-5165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9926164$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9926164$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuan, Zheng</creatorcontrib><creatorcontrib>Feng, Song</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Jing, Weixuan</creatorcontrib><creatorcontrib>Zhao, Libo</creatorcontrib><creatorcontrib>Jiang, Zhuangde</creatorcontrib><title>A Ferromagnetic Particle Sensor Based on a Honeycomb Permanent Magnet for High Precision and High Throughput</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>A multichannel passive ferromagnetic particle inductive sensor is proposed, which is mainly composed of a honeycomb permanent magnet and a set of coils. The honeycomb magnet generates the same high gradient static magnetic field in each channel (a total of seven channels, six surrounding, and one center), which helps improve the sensor's throughput while maintain high precision. An induced voltage model that includes most of the structural design parameters is proposed, which provides theoretical support for sensor optimization. The correctness of this model is verified by finite element simulation and experiments. The experimental results show that the detection performance of each channel is almost the same, which is expected to be further improved by setting a reference channel. Moreover, the sensor can detect 70 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> iron particles in a single channel of diameter 4 mm. The proposed sensor can reduce the influence of magnetic field radial uniformity on the induced signals, improve the detection precision, and achieve high throughput (about a 14-fold increase in throughput compared to our previous work). Its high precision and high throughput favor lots of lube oil detection.</description><subject>Coils</subject><subject>Design parameters</subject><subject>Ferromagnetism</subject><subject>Finite element method</subject><subject>High precision</subject><subject>high throughput</subject><subject>honeycomb permanent magnet</subject><subject>Induced voltage</subject><subject>induced voltage model</subject><subject>Inductive sensing devices</subject><subject>Iron</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Magnetostatics</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>passive ferromagnetic particle sensor</subject><subject>Permanent magnets</subject><subject>Sensors</subject><subject>Structural design</subject><subject>Throughput</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoOKd3wUvAc2d-NWmOU5wbbDhwnkOavm4dazOT9rD_3s4OT1947_N9Dz4IPVIyoZTol81iNWGEsQlnVApCr9CIpqlKtJTsGo0IoVmiRSpv0V2Me0KIkkKN0GGKZxCCr-22gbZyeG1DHwfAX9BEH_CrjVBg32CL576Bk_N1jtcQattA0-LVXw-XPTmvtju8DuCqWJ35phhGm13w3XZ37Np7dFPaQ4SHS47R9-x98zZPlp8fi7fpMnFM0zbRmSgYYy6zUqXSZZxQXqicC5tJxXNBNeMF1wwYd47nqdJOCg1lXhDOUpfzMXoe7h6D_-kgtmbvu9D0Lw1TXPBMC5H1FBkoF3yMAUpzDFVtw8lQYs5OTe_UnJ2ai9O-8jRUKgD4x7Vmst_zX_21cZs</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yuan, Zheng</creator><creator>Feng, Song</creator><creator>Chen, Shanshan</creator><creator>Jing, Weixuan</creator><creator>Zhao, Libo</creator><creator>Jiang, Zhuangde</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8968-790X</orcidid><orcidid>https://orcid.org/0000-0002-9320-930X</orcidid><orcidid>https://orcid.org/0000-0001-6101-8173</orcidid><orcidid>https://orcid.org/0000-0001-5557-2653</orcidid><orcidid>https://orcid.org/0000-0001-5124-3959</orcidid><orcidid>https://orcid.org/0000-0002-9347-5165</orcidid></search><sort><creationdate>2022</creationdate><title>A Ferromagnetic Particle Sensor Based on a Honeycomb Permanent Magnet for High Precision and High Throughput</title><author>Yuan, Zheng ; Feng, Song ; Chen, Shanshan ; Jing, Weixuan ; Zhao, Libo ; Jiang, Zhuangde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-984d222c8a6756c83013d7b34a8673b41923d392e23cc3b579c649efbd0325cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coils</topic><topic>Design parameters</topic><topic>Ferromagnetism</topic><topic>Finite element method</topic><topic>High precision</topic><topic>high throughput</topic><topic>honeycomb permanent magnet</topic><topic>Induced voltage</topic><topic>induced voltage model</topic><topic>Inductive sensing devices</topic><topic>Iron</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Magnetostatics</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>passive ferromagnetic particle sensor</topic><topic>Permanent magnets</topic><topic>Sensors</topic><topic>Structural design</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Zheng</creatorcontrib><creatorcontrib>Feng, Song</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Jing, Weixuan</creatorcontrib><creatorcontrib>Zhao, Libo</creatorcontrib><creatorcontrib>Jiang, Zhuangde</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuan, Zheng</au><au>Feng, Song</au><au>Chen, Shanshan</au><au>Jing, Weixuan</au><au>Zhao, Libo</au><au>Jiang, Zhuangde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Ferromagnetic Particle Sensor Based on a Honeycomb Permanent Magnet for High Precision and High Throughput</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>A multichannel passive ferromagnetic particle inductive sensor is proposed, which is mainly composed of a honeycomb permanent magnet and a set of coils. The honeycomb magnet generates the same high gradient static magnetic field in each channel (a total of seven channels, six surrounding, and one center), which helps improve the sensor's throughput while maintain high precision. An induced voltage model that includes most of the structural design parameters is proposed, which provides theoretical support for sensor optimization. The correctness of this model is verified by finite element simulation and experiments. The experimental results show that the detection performance of each channel is almost the same, which is expected to be further improved by setting a reference channel. Moreover, the sensor can detect 70 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> iron particles in a single channel of diameter 4 mm. The proposed sensor can reduce the influence of magnetic field radial uniformity on the induced signals, improve the detection precision, and achieve high throughput (about a 14-fold increase in throughput compared to our previous work). Its high precision and high throughput favor lots of lube oil detection.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3216401</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8968-790X</orcidid><orcidid>https://orcid.org/0000-0002-9320-930X</orcidid><orcidid>https://orcid.org/0000-0001-6101-8173</orcidid><orcidid>https://orcid.org/0000-0001-5557-2653</orcidid><orcidid>https://orcid.org/0000-0001-5124-3959</orcidid><orcidid>https://orcid.org/0000-0002-9347-5165</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-9 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2022_3216401 |
source | IEEE Electronic Library (IEL) |
subjects | Coils Design parameters Ferromagnetism Finite element method High precision high throughput honeycomb permanent magnet Induced voltage induced voltage model Inductive sensing devices Iron Magnetic fields Magnetic flux Magnetism Magnetostatics Mathematical models Optimization passive ferromagnetic particle sensor Permanent magnets Sensors Structural design Throughput |
title | A Ferromagnetic Particle Sensor Based on a Honeycomb Permanent Magnet for High Precision and High Throughput |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Ferromagnetic%20Particle%20Sensor%20Based%20on%20a%20Honeycomb%20Permanent%20Magnet%20for%20High%20Precision%20and%20High%20Throughput&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Yuan,%20Zheng&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3216401&rft_dat=%3Cproquest_RIE%3E2734389448%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734389448&rft_id=info:pmid/&rft_ieee_id=9926164&rfr_iscdi=true |