Phase-to-Coordinates Calibration for Fringe Projection Profilometry Using Gaussian Process Regression

In the task of 3-D topography measurement by fringe projection profilometry (FPP), it is crucial to establish mapping from the phase map to the 3-D coordinates, known as 3-D calibration. The traditional methods are prone to select some specific functions to fit the phase-to-coordinates' relatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-12
Hauptverfasser: Pei, Xiaohan, Liu, Jiayu, Yang, Yuansong, Ren, Mingjun, Zhu, Limin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 71
creator Pei, Xiaohan
Liu, Jiayu
Yang, Yuansong
Ren, Mingjun
Zhu, Limin
description In the task of 3-D topography measurement by fringe projection profilometry (FPP), it is crucial to establish mapping from the phase map to the 3-D coordinates, known as 3-D calibration. The traditional methods are prone to select some specific functions to fit the phase-to-coordinates' relationship, which needs to make a compromise between measurement accuracy and efficiency. This article proposes a novel calibration method based on the Gaussian process (GP) regression to solve this problem. In this work, according to the geometric and other systemic constraints, a pixel-dependent semiparameterized calibration model is derived to guarantee the efficiency of computation and data storage. Based on the spatial correlations of the calibration data, the GP regression method is applied to enhance the fitting ability and flexibility of the calibration model without any specific functions and parameters. The GP regression method is also applied to remove random noise from the phase map, which further improves the accuracy of 3-D coordinates. The experimental results of measuring a whiteboard and a double ball bar demonstrate the superiority of the proposed GP-based calibration model in terms of accuracy and robustness when compared with the traditional models.
doi_str_mv 10.1109/TIM.2022.3162275
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2022_3162275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9741717</ieee_id><sourcerecordid>2649793101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-bbb3857ae10eca914fad62d6ff036ab39b17965fc0a01c8284b496eecc1900523</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeA59SZTbKbPUrQWqhYpD2HzXa2prTZupse-t-7_cDTG-b93gw8xh4RRoigXuaTzxEHzkcZCs5lccUGWBQyVULwazYAwDJVeSFu2V0IawCQIpcDRrMfHSjtXVo555dtp3sKSaU3beN137ousc4n777tVpTMvFuTOW3jaNuN21LvD8kiRDsZ630IrT55hkJIvmnlo0b8nt1YvQn0cNEhW7y_zauPdPo1nlSv09RwhX3aNE1WFlITAhmtMLd6KfhSWAuZ0E2mGpRKFNaABjQlL_MmV4LIGFQABc-G7Pl8d-fd755CX6_d3nfxZc1FrqTKEDBScKaMdyF4svXOt1vtDzVCfSyzjmXWxzLrS5kx8nSOtET0jyuZo0SZ_QHUt3Gn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649793101</pqid></control><display><type>article</type><title>Phase-to-Coordinates Calibration for Fringe Projection Profilometry Using Gaussian Process Regression</title><source>IEEE Electronic Library (IEL)</source><creator>Pei, Xiaohan ; Liu, Jiayu ; Yang, Yuansong ; Ren, Mingjun ; Zhu, Limin</creator><creatorcontrib>Pei, Xiaohan ; Liu, Jiayu ; Yang, Yuansong ; Ren, Mingjun ; Zhu, Limin</creatorcontrib><description>In the task of 3-D topography measurement by fringe projection profilometry (FPP), it is crucial to establish mapping from the phase map to the 3-D coordinates, known as 3-D calibration. The traditional methods are prone to select some specific functions to fit the phase-to-coordinates' relationship, which needs to make a compromise between measurement accuracy and efficiency. This article proposes a novel calibration method based on the Gaussian process (GP) regression to solve this problem. In this work, according to the geometric and other systemic constraints, a pixel-dependent semiparameterized calibration model is derived to guarantee the efficiency of computation and data storage. Based on the spatial correlations of the calibration data, the GP regression method is applied to enhance the fitting ability and flexibility of the calibration model without any specific functions and parameters. The GP regression method is also applied to remove random noise from the phase map, which further improves the accuracy of 3-D coordinates. The experimental results of measuring a whiteboard and a double ball bar demonstrate the superiority of the proposed GP-based calibration model in terms of accuracy and robustness when compared with the traditional models.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3162275</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D topography measurement ; Accuracy ; Calibration ; Cameras ; Constraint modelling ; Data models ; Data storage ; Double ball bars ; fringe projection profilometry (FPP) ; Gaussian process ; Gaussian process (GP) regression ; Imaging ; Mathematical models ; Phase measurement ; phase-smoothing ; phase-to-coordinates’ calibration ; Random noise ; Regression ; Three-dimensional displays</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-bbb3857ae10eca914fad62d6ff036ab39b17965fc0a01c8284b496eecc1900523</citedby><cites>FETCH-LOGICAL-c291t-bbb3857ae10eca914fad62d6ff036ab39b17965fc0a01c8284b496eecc1900523</cites><orcidid>0000-0003-2250-849X ; 0000-0001-8796-5355 ; 0000-0003-3194-6731 ; 0000-0001-5923-3915 ; 0000-0002-9566-2650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9741717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9741717$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pei, Xiaohan</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Yang, Yuansong</creatorcontrib><creatorcontrib>Ren, Mingjun</creatorcontrib><creatorcontrib>Zhu, Limin</creatorcontrib><title>Phase-to-Coordinates Calibration for Fringe Projection Profilometry Using Gaussian Process Regression</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>In the task of 3-D topography measurement by fringe projection profilometry (FPP), it is crucial to establish mapping from the phase map to the 3-D coordinates, known as 3-D calibration. The traditional methods are prone to select some specific functions to fit the phase-to-coordinates' relationship, which needs to make a compromise between measurement accuracy and efficiency. This article proposes a novel calibration method based on the Gaussian process (GP) regression to solve this problem. In this work, according to the geometric and other systemic constraints, a pixel-dependent semiparameterized calibration model is derived to guarantee the efficiency of computation and data storage. Based on the spatial correlations of the calibration data, the GP regression method is applied to enhance the fitting ability and flexibility of the calibration model without any specific functions and parameters. The GP regression method is also applied to remove random noise from the phase map, which further improves the accuracy of 3-D coordinates. The experimental results of measuring a whiteboard and a double ball bar demonstrate the superiority of the proposed GP-based calibration model in terms of accuracy and robustness when compared with the traditional models.</description><subject>3-D topography measurement</subject><subject>Accuracy</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Constraint modelling</subject><subject>Data models</subject><subject>Data storage</subject><subject>Double ball bars</subject><subject>fringe projection profilometry (FPP)</subject><subject>Gaussian process</subject><subject>Gaussian process (GP) regression</subject><subject>Imaging</subject><subject>Mathematical models</subject><subject>Phase measurement</subject><subject>phase-smoothing</subject><subject>phase-to-coordinates’ calibration</subject><subject>Random noise</subject><subject>Regression</subject><subject>Three-dimensional displays</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpeA59SZTbKbPUrQWqhYpD2HzXa2prTZupse-t-7_cDTG-b93gw8xh4RRoigXuaTzxEHzkcZCs5lccUGWBQyVULwazYAwDJVeSFu2V0IawCQIpcDRrMfHSjtXVo555dtp3sKSaU3beN137ousc4n777tVpTMvFuTOW3jaNuN21LvD8kiRDsZ630IrT55hkJIvmnlo0b8nt1YvQn0cNEhW7y_zauPdPo1nlSv09RwhX3aNE1WFlITAhmtMLd6KfhSWAuZ0E2mGpRKFNaABjQlL_MmV4LIGFQABc-G7Pl8d-fd755CX6_d3nfxZc1FrqTKEDBScKaMdyF4svXOt1vtDzVCfSyzjmXWxzLrS5kx8nSOtET0jyuZo0SZ_QHUt3Gn</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Pei, Xiaohan</creator><creator>Liu, Jiayu</creator><creator>Yang, Yuansong</creator><creator>Ren, Mingjun</creator><creator>Zhu, Limin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2250-849X</orcidid><orcidid>https://orcid.org/0000-0001-8796-5355</orcidid><orcidid>https://orcid.org/0000-0003-3194-6731</orcidid><orcidid>https://orcid.org/0000-0001-5923-3915</orcidid><orcidid>https://orcid.org/0000-0002-9566-2650</orcidid></search><sort><creationdate>2022</creationdate><title>Phase-to-Coordinates Calibration for Fringe Projection Profilometry Using Gaussian Process Regression</title><author>Pei, Xiaohan ; Liu, Jiayu ; Yang, Yuansong ; Ren, Mingjun ; Zhu, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-bbb3857ae10eca914fad62d6ff036ab39b17965fc0a01c8284b496eecc1900523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D topography measurement</topic><topic>Accuracy</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Constraint modelling</topic><topic>Data models</topic><topic>Data storage</topic><topic>Double ball bars</topic><topic>fringe projection profilometry (FPP)</topic><topic>Gaussian process</topic><topic>Gaussian process (GP) regression</topic><topic>Imaging</topic><topic>Mathematical models</topic><topic>Phase measurement</topic><topic>phase-smoothing</topic><topic>phase-to-coordinates’ calibration</topic><topic>Random noise</topic><topic>Regression</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Xiaohan</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Yang, Yuansong</creatorcontrib><creatorcontrib>Ren, Mingjun</creatorcontrib><creatorcontrib>Zhu, Limin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pei, Xiaohan</au><au>Liu, Jiayu</au><au>Yang, Yuansong</au><au>Ren, Mingjun</au><au>Zhu, Limin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-to-Coordinates Calibration for Fringe Projection Profilometry Using Gaussian Process Regression</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>In the task of 3-D topography measurement by fringe projection profilometry (FPP), it is crucial to establish mapping from the phase map to the 3-D coordinates, known as 3-D calibration. The traditional methods are prone to select some specific functions to fit the phase-to-coordinates' relationship, which needs to make a compromise between measurement accuracy and efficiency. This article proposes a novel calibration method based on the Gaussian process (GP) regression to solve this problem. In this work, according to the geometric and other systemic constraints, a pixel-dependent semiparameterized calibration model is derived to guarantee the efficiency of computation and data storage. Based on the spatial correlations of the calibration data, the GP regression method is applied to enhance the fitting ability and flexibility of the calibration model without any specific functions and parameters. The GP regression method is also applied to remove random noise from the phase map, which further improves the accuracy of 3-D coordinates. The experimental results of measuring a whiteboard and a double ball bar demonstrate the superiority of the proposed GP-based calibration model in terms of accuracy and robustness when compared with the traditional models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3162275</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2250-849X</orcidid><orcidid>https://orcid.org/0000-0001-8796-5355</orcidid><orcidid>https://orcid.org/0000-0003-3194-6731</orcidid><orcidid>https://orcid.org/0000-0001-5923-3915</orcidid><orcidid>https://orcid.org/0000-0002-9566-2650</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2022_3162275
source IEEE Electronic Library (IEL)
subjects 3-D topography measurement
Accuracy
Calibration
Cameras
Constraint modelling
Data models
Data storage
Double ball bars
fringe projection profilometry (FPP)
Gaussian process
Gaussian process (GP) regression
Imaging
Mathematical models
Phase measurement
phase-smoothing
phase-to-coordinates’ calibration
Random noise
Regression
Three-dimensional displays
title Phase-to-Coordinates Calibration for Fringe Projection Profilometry Using Gaussian Process Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-to-Coordinates%20Calibration%20for%20Fringe%20Projection%20Profilometry%20Using%20Gaussian%20Process%20Regression&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Pei,%20Xiaohan&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3162275&rft_dat=%3Cproquest_RIE%3E2649793101%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649793101&rft_id=info:pmid/&rft_ieee_id=9741717&rfr_iscdi=true