Phase-to-Coordinates Calibration for Fringe Projection Profilometry Using Gaussian Process Regression
In the task of 3-D topography measurement by fringe projection profilometry (FPP), it is crucial to establish mapping from the phase map to the 3-D coordinates, known as 3-D calibration. The traditional methods are prone to select some specific functions to fit the phase-to-coordinates' relatio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 71 |
creator | Pei, Xiaohan Liu, Jiayu Yang, Yuansong Ren, Mingjun Zhu, Limin |
description | In the task of 3-D topography measurement by fringe projection profilometry (FPP), it is crucial to establish mapping from the phase map to the 3-D coordinates, known as 3-D calibration. The traditional methods are prone to select some specific functions to fit the phase-to-coordinates' relationship, which needs to make a compromise between measurement accuracy and efficiency. This article proposes a novel calibration method based on the Gaussian process (GP) regression to solve this problem. In this work, according to the geometric and other systemic constraints, a pixel-dependent semiparameterized calibration model is derived to guarantee the efficiency of computation and data storage. Based on the spatial correlations of the calibration data, the GP regression method is applied to enhance the fitting ability and flexibility of the calibration model without any specific functions and parameters. The GP regression method is also applied to remove random noise from the phase map, which further improves the accuracy of 3-D coordinates. The experimental results of measuring a whiteboard and a double ball bar demonstrate the superiority of the proposed GP-based calibration model in terms of accuracy and robustness when compared with the traditional models. |
doi_str_mv | 10.1109/TIM.2022.3162275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2022_3162275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9741717</ieee_id><sourcerecordid>2649793101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-bbb3857ae10eca914fad62d6ff036ab39b17965fc0a01c8284b496eecc1900523</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeA59SZTbKbPUrQWqhYpD2HzXa2prTZupse-t-7_cDTG-b93gw8xh4RRoigXuaTzxEHzkcZCs5lccUGWBQyVULwazYAwDJVeSFu2V0IawCQIpcDRrMfHSjtXVo555dtp3sKSaU3beN137ousc4n777tVpTMvFuTOW3jaNuN21LvD8kiRDsZ630IrT55hkJIvmnlo0b8nt1YvQn0cNEhW7y_zauPdPo1nlSv09RwhX3aNE1WFlITAhmtMLd6KfhSWAuZ0E2mGpRKFNaABjQlL_MmV4LIGFQABc-G7Pl8d-fd755CX6_d3nfxZc1FrqTKEDBScKaMdyF4svXOt1vtDzVCfSyzjmXWxzLrS5kx8nSOtET0jyuZo0SZ_QHUt3Gn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649793101</pqid></control><display><type>article</type><title>Phase-to-Coordinates Calibration for Fringe Projection Profilometry Using Gaussian Process Regression</title><source>IEEE Electronic Library (IEL)</source><creator>Pei, Xiaohan ; Liu, Jiayu ; Yang, Yuansong ; Ren, Mingjun ; Zhu, Limin</creator><creatorcontrib>Pei, Xiaohan ; Liu, Jiayu ; Yang, Yuansong ; Ren, Mingjun ; Zhu, Limin</creatorcontrib><description>In the task of 3-D topography measurement by fringe projection profilometry (FPP), it is crucial to establish mapping from the phase map to the 3-D coordinates, known as 3-D calibration. The traditional methods are prone to select some specific functions to fit the phase-to-coordinates' relationship, which needs to make a compromise between measurement accuracy and efficiency. This article proposes a novel calibration method based on the Gaussian process (GP) regression to solve this problem. In this work, according to the geometric and other systemic constraints, a pixel-dependent semiparameterized calibration model is derived to guarantee the efficiency of computation and data storage. Based on the spatial correlations of the calibration data, the GP regression method is applied to enhance the fitting ability and flexibility of the calibration model without any specific functions and parameters. The GP regression method is also applied to remove random noise from the phase map, which further improves the accuracy of 3-D coordinates. The experimental results of measuring a whiteboard and a double ball bar demonstrate the superiority of the proposed GP-based calibration model in terms of accuracy and robustness when compared with the traditional models.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3162275</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D topography measurement ; Accuracy ; Calibration ; Cameras ; Constraint modelling ; Data models ; Data storage ; Double ball bars ; fringe projection profilometry (FPP) ; Gaussian process ; Gaussian process (GP) regression ; Imaging ; Mathematical models ; Phase measurement ; phase-smoothing ; phase-to-coordinates’ calibration ; Random noise ; Regression ; Three-dimensional displays</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-bbb3857ae10eca914fad62d6ff036ab39b17965fc0a01c8284b496eecc1900523</citedby><cites>FETCH-LOGICAL-c291t-bbb3857ae10eca914fad62d6ff036ab39b17965fc0a01c8284b496eecc1900523</cites><orcidid>0000-0003-2250-849X ; 0000-0001-8796-5355 ; 0000-0003-3194-6731 ; 0000-0001-5923-3915 ; 0000-0002-9566-2650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9741717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9741717$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pei, Xiaohan</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Yang, Yuansong</creatorcontrib><creatorcontrib>Ren, Mingjun</creatorcontrib><creatorcontrib>Zhu, Limin</creatorcontrib><title>Phase-to-Coordinates Calibration for Fringe Projection Profilometry Using Gaussian Process Regression</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>In the task of 3-D topography measurement by fringe projection profilometry (FPP), it is crucial to establish mapping from the phase map to the 3-D coordinates, known as 3-D calibration. The traditional methods are prone to select some specific functions to fit the phase-to-coordinates' relationship, which needs to make a compromise between measurement accuracy and efficiency. This article proposes a novel calibration method based on the Gaussian process (GP) regression to solve this problem. In this work, according to the geometric and other systemic constraints, a pixel-dependent semiparameterized calibration model is derived to guarantee the efficiency of computation and data storage. Based on the spatial correlations of the calibration data, the GP regression method is applied to enhance the fitting ability and flexibility of the calibration model without any specific functions and parameters. The GP regression method is also applied to remove random noise from the phase map, which further improves the accuracy of 3-D coordinates. The experimental results of measuring a whiteboard and a double ball bar demonstrate the superiority of the proposed GP-based calibration model in terms of accuracy and robustness when compared with the traditional models.</description><subject>3-D topography measurement</subject><subject>Accuracy</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Constraint modelling</subject><subject>Data models</subject><subject>Data storage</subject><subject>Double ball bars</subject><subject>fringe projection profilometry (FPP)</subject><subject>Gaussian process</subject><subject>Gaussian process (GP) regression</subject><subject>Imaging</subject><subject>Mathematical models</subject><subject>Phase measurement</subject><subject>phase-smoothing</subject><subject>phase-to-coordinates’ calibration</subject><subject>Random noise</subject><subject>Regression</subject><subject>Three-dimensional displays</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpeA59SZTbKbPUrQWqhYpD2HzXa2prTZupse-t-7_cDTG-b93gw8xh4RRoigXuaTzxEHzkcZCs5lccUGWBQyVULwazYAwDJVeSFu2V0IawCQIpcDRrMfHSjtXVo555dtp3sKSaU3beN137ousc4n777tVpTMvFuTOW3jaNuN21LvD8kiRDsZ630IrT55hkJIvmnlo0b8nt1YvQn0cNEhW7y_zauPdPo1nlSv09RwhX3aNE1WFlITAhmtMLd6KfhSWAuZ0E2mGpRKFNaABjQlL_MmV4LIGFQABc-G7Pl8d-fd755CX6_d3nfxZc1FrqTKEDBScKaMdyF4svXOt1vtDzVCfSyzjmXWxzLrS5kx8nSOtET0jyuZo0SZ_QHUt3Gn</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Pei, Xiaohan</creator><creator>Liu, Jiayu</creator><creator>Yang, Yuansong</creator><creator>Ren, Mingjun</creator><creator>Zhu, Limin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2250-849X</orcidid><orcidid>https://orcid.org/0000-0001-8796-5355</orcidid><orcidid>https://orcid.org/0000-0003-3194-6731</orcidid><orcidid>https://orcid.org/0000-0001-5923-3915</orcidid><orcidid>https://orcid.org/0000-0002-9566-2650</orcidid></search><sort><creationdate>2022</creationdate><title>Phase-to-Coordinates Calibration for Fringe Projection Profilometry Using Gaussian Process Regression</title><author>Pei, Xiaohan ; Liu, Jiayu ; Yang, Yuansong ; Ren, Mingjun ; Zhu, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-bbb3857ae10eca914fad62d6ff036ab39b17965fc0a01c8284b496eecc1900523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D topography measurement</topic><topic>Accuracy</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Constraint modelling</topic><topic>Data models</topic><topic>Data storage</topic><topic>Double ball bars</topic><topic>fringe projection profilometry (FPP)</topic><topic>Gaussian process</topic><topic>Gaussian process (GP) regression</topic><topic>Imaging</topic><topic>Mathematical models</topic><topic>Phase measurement</topic><topic>phase-smoothing</topic><topic>phase-to-coordinates’ calibration</topic><topic>Random noise</topic><topic>Regression</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Xiaohan</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Yang, Yuansong</creatorcontrib><creatorcontrib>Ren, Mingjun</creatorcontrib><creatorcontrib>Zhu, Limin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pei, Xiaohan</au><au>Liu, Jiayu</au><au>Yang, Yuansong</au><au>Ren, Mingjun</au><au>Zhu, Limin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-to-Coordinates Calibration for Fringe Projection Profilometry Using Gaussian Process Regression</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>In the task of 3-D topography measurement by fringe projection profilometry (FPP), it is crucial to establish mapping from the phase map to the 3-D coordinates, known as 3-D calibration. The traditional methods are prone to select some specific functions to fit the phase-to-coordinates' relationship, which needs to make a compromise between measurement accuracy and efficiency. This article proposes a novel calibration method based on the Gaussian process (GP) regression to solve this problem. In this work, according to the geometric and other systemic constraints, a pixel-dependent semiparameterized calibration model is derived to guarantee the efficiency of computation and data storage. Based on the spatial correlations of the calibration data, the GP regression method is applied to enhance the fitting ability and flexibility of the calibration model without any specific functions and parameters. The GP regression method is also applied to remove random noise from the phase map, which further improves the accuracy of 3-D coordinates. The experimental results of measuring a whiteboard and a double ball bar demonstrate the superiority of the proposed GP-based calibration model in terms of accuracy and robustness when compared with the traditional models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3162275</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2250-849X</orcidid><orcidid>https://orcid.org/0000-0001-8796-5355</orcidid><orcidid>https://orcid.org/0000-0003-3194-6731</orcidid><orcidid>https://orcid.org/0000-0001-5923-3915</orcidid><orcidid>https://orcid.org/0000-0002-9566-2650</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-12 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2022_3162275 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D topography measurement Accuracy Calibration Cameras Constraint modelling Data models Data storage Double ball bars fringe projection profilometry (FPP) Gaussian process Gaussian process (GP) regression Imaging Mathematical models Phase measurement phase-smoothing phase-to-coordinates’ calibration Random noise Regression Three-dimensional displays |
title | Phase-to-Coordinates Calibration for Fringe Projection Profilometry Using Gaussian Process Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-to-Coordinates%20Calibration%20for%20Fringe%20Projection%20Profilometry%20Using%20Gaussian%20Process%20Regression&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Pei,%20Xiaohan&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3162275&rft_dat=%3Cproquest_RIE%3E2649793101%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649793101&rft_id=info:pmid/&rft_ieee_id=9741717&rfr_iscdi=true |