Harmonic Detection for Active Power Filter Based on Two-Step Improved EEMD
The performance of active power filter (APF) mainly depends on its harmonic detection method. Empirical mode decomposition (EMD) is applied to APF because of its effectiveness for any complicated signal analysis. Ensemble empirical mode decomposition (EEMD) can suppress mode mixing caused by EMD to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 71 |
creator | Wang, Rongkun Huang, Wenjie Hu, Bingtao Du, Quankai Guo, Xinhua |
description | The performance of active power filter (APF) mainly depends on its harmonic detection method. Empirical mode decomposition (EMD) is applied to APF because of its effectiveness for any complicated signal analysis. Ensemble empirical mode decomposition (EEMD) can suppress mode mixing caused by EMD to a certain extent, but the amplitude and energy of fundamental is severely attenuated. To solve this problem, in this article, the causes of attenuation are discussed from the perspective of intrinsic mode functions (IMFs) energy, and an approach based on two-step improved EEMD is proposed. The first improved step (FI-EEMD) is to suppress the mode mixing and fundamental attenuation by injecting white noise and analytical signal with determined parameters into the target signal. The parameters of the analytical signal are selected according to the power grid conditions and signal characteristics. The second improved step (SI-EEMD) puts forward a signal reconstruction method based on the distribution of IMF energy extreme points and the distinguishing law of signal and noise to reduce the influence of noise-dominated components. The results show that the two-step improved EEMD not only has high-quality extracted fundamental with low total harmonic distortion (THD) and energy attenuation, but also has good applicability to aperiodic and nonstationary signals, which greatly improve the harmonic detection accuracy of APF. |
doi_str_mv | 10.1109/TIM.2022.3146913 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2022_3146913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9694635</ieee_id><sourcerecordid>2635046056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-801422c456d2865d9d11a3f629a681f3a81ebc75d825b7032c8f719e29cef9973</originalsourceid><addsrcrecordid>eNo9kEtLAzEQx4MoWKt3wUvA89bJczfH2oettChYz2GbnYUtbVOTbYvf3pQWTzMM_8fwI-SRQY8xMC-L6bzHgfOeYFIbJq5IhymVZ0Zrfk06AKzIjFT6ltzFuAKAXMu8Q94nZdj4bePoEFt0beO3tPaB9tN6QPrpjxjouFm3abyWESuaBIujz75a3NHpZhf8IR1Ho_nwntzU5Triw2V2yfd4tBhMstnH23TQn2VOgmyzApjk3KVXKl5oVZmKsVLUmptSF6wWZcFw6XJVFVwtcxDcFXXODHLjsDYmF13yfM5N3T97jK1d-X3YpkrLtVAgNSidVHBWueBjDFjbXWg2Zfi1DOyJmE3E7ImYvRBLlqezpUHEf7nRRqZY8QesL2Sd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635046056</pqid></control><display><type>article</type><title>Harmonic Detection for Active Power Filter Based on Two-Step Improved EEMD</title><source>IEEE Electronic Library Online</source><creator>Wang, Rongkun ; Huang, Wenjie ; Hu, Bingtao ; Du, Quankai ; Guo, Xinhua</creator><creatorcontrib>Wang, Rongkun ; Huang, Wenjie ; Hu, Bingtao ; Du, Quankai ; Guo, Xinhua</creatorcontrib><description>The performance of active power filter (APF) mainly depends on its harmonic detection method. Empirical mode decomposition (EMD) is applied to APF because of its effectiveness for any complicated signal analysis. Ensemble empirical mode decomposition (EEMD) can suppress mode mixing caused by EMD to a certain extent, but the amplitude and energy of fundamental is severely attenuated. To solve this problem, in this article, the causes of attenuation are discussed from the perspective of intrinsic mode functions (IMFs) energy, and an approach based on two-step improved EEMD is proposed. The first improved step (FI-EEMD) is to suppress the mode mixing and fundamental attenuation by injecting white noise and analytical signal with determined parameters into the target signal. The parameters of the analytical signal are selected according to the power grid conditions and signal characteristics. The second improved step (SI-EEMD) puts forward a signal reconstruction method based on the distribution of IMF energy extreme points and the distinguishing law of signal and noise to reduce the influence of noise-dominated components. The results show that the two-step improved EEMD not only has high-quality extracted fundamental with low total harmonic distortion (THD) and energy attenuation, but also has good applicability to aperiodic and nonstationary signals, which greatly improve the harmonic detection accuracy of APF.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3146913</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active filters ; Active power filter (APF) ; Attenuation ; Electric power grids ; Empirical analysis ; Energy distribution ; ensemble empirical mode decomposition (EEMD) ; fundamental attenuation ; Harmonic analysis ; Harmonic distortion ; intrinsic mode function (IMF) energy distribution ; Mathematical analysis ; Noise ; Parameters ; Power filters ; Power grids ; Power harmonic filters ; Signal analysis ; Signal reconstruction ; White noise</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-801422c456d2865d9d11a3f629a681f3a81ebc75d825b7032c8f719e29cef9973</citedby><cites>FETCH-LOGICAL-c404t-801422c456d2865d9d11a3f629a681f3a81ebc75d825b7032c8f719e29cef9973</cites><orcidid>0000-0002-8123-7573 ; 0000-0002-5625-4267 ; 0000-0002-2045-454X ; 0000-0001-7403-2396 ; 0000-0002-6887-9037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9694635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9694635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Rongkun</creatorcontrib><creatorcontrib>Huang, Wenjie</creatorcontrib><creatorcontrib>Hu, Bingtao</creatorcontrib><creatorcontrib>Du, Quankai</creatorcontrib><creatorcontrib>Guo, Xinhua</creatorcontrib><title>Harmonic Detection for Active Power Filter Based on Two-Step Improved EEMD</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The performance of active power filter (APF) mainly depends on its harmonic detection method. Empirical mode decomposition (EMD) is applied to APF because of its effectiveness for any complicated signal analysis. Ensemble empirical mode decomposition (EEMD) can suppress mode mixing caused by EMD to a certain extent, but the amplitude and energy of fundamental is severely attenuated. To solve this problem, in this article, the causes of attenuation are discussed from the perspective of intrinsic mode functions (IMFs) energy, and an approach based on two-step improved EEMD is proposed. The first improved step (FI-EEMD) is to suppress the mode mixing and fundamental attenuation by injecting white noise and analytical signal with determined parameters into the target signal. The parameters of the analytical signal are selected according to the power grid conditions and signal characteristics. The second improved step (SI-EEMD) puts forward a signal reconstruction method based on the distribution of IMF energy extreme points and the distinguishing law of signal and noise to reduce the influence of noise-dominated components. The results show that the two-step improved EEMD not only has high-quality extracted fundamental with low total harmonic distortion (THD) and energy attenuation, but also has good applicability to aperiodic and nonstationary signals, which greatly improve the harmonic detection accuracy of APF.</description><subject>Active filters</subject><subject>Active power filter (APF)</subject><subject>Attenuation</subject><subject>Electric power grids</subject><subject>Empirical analysis</subject><subject>Energy distribution</subject><subject>ensemble empirical mode decomposition (EEMD)</subject><subject>fundamental attenuation</subject><subject>Harmonic analysis</subject><subject>Harmonic distortion</subject><subject>intrinsic mode function (IMF) energy distribution</subject><subject>Mathematical analysis</subject><subject>Noise</subject><subject>Parameters</subject><subject>Power filters</subject><subject>Power grids</subject><subject>Power harmonic filters</subject><subject>Signal analysis</subject><subject>Signal reconstruction</subject><subject>White noise</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEQx4MoWKt3wUvA89bJczfH2oettChYz2GbnYUtbVOTbYvf3pQWTzMM_8fwI-SRQY8xMC-L6bzHgfOeYFIbJq5IhymVZ0Zrfk06AKzIjFT6ltzFuAKAXMu8Q94nZdj4bePoEFt0beO3tPaB9tN6QPrpjxjouFm3abyWESuaBIujz75a3NHpZhf8IR1Ho_nwntzU5Triw2V2yfd4tBhMstnH23TQn2VOgmyzApjk3KVXKl5oVZmKsVLUmptSF6wWZcFw6XJVFVwtcxDcFXXODHLjsDYmF13yfM5N3T97jK1d-X3YpkrLtVAgNSidVHBWueBjDFjbXWg2Zfi1DOyJmE3E7ImYvRBLlqezpUHEf7nRRqZY8QesL2Sd</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wang, Rongkun</creator><creator>Huang, Wenjie</creator><creator>Hu, Bingtao</creator><creator>Du, Quankai</creator><creator>Guo, Xinhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8123-7573</orcidid><orcidid>https://orcid.org/0000-0002-5625-4267</orcidid><orcidid>https://orcid.org/0000-0002-2045-454X</orcidid><orcidid>https://orcid.org/0000-0001-7403-2396</orcidid><orcidid>https://orcid.org/0000-0002-6887-9037</orcidid></search><sort><creationdate>2022</creationdate><title>Harmonic Detection for Active Power Filter Based on Two-Step Improved EEMD</title><author>Wang, Rongkun ; Huang, Wenjie ; Hu, Bingtao ; Du, Quankai ; Guo, Xinhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-801422c456d2865d9d11a3f629a681f3a81ebc75d825b7032c8f719e29cef9973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active filters</topic><topic>Active power filter (APF)</topic><topic>Attenuation</topic><topic>Electric power grids</topic><topic>Empirical analysis</topic><topic>Energy distribution</topic><topic>ensemble empirical mode decomposition (EEMD)</topic><topic>fundamental attenuation</topic><topic>Harmonic analysis</topic><topic>Harmonic distortion</topic><topic>intrinsic mode function (IMF) energy distribution</topic><topic>Mathematical analysis</topic><topic>Noise</topic><topic>Parameters</topic><topic>Power filters</topic><topic>Power grids</topic><topic>Power harmonic filters</topic><topic>Signal analysis</topic><topic>Signal reconstruction</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Rongkun</creatorcontrib><creatorcontrib>Huang, Wenjie</creatorcontrib><creatorcontrib>Hu, Bingtao</creatorcontrib><creatorcontrib>Du, Quankai</creatorcontrib><creatorcontrib>Guo, Xinhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Rongkun</au><au>Huang, Wenjie</au><au>Hu, Bingtao</au><au>Du, Quankai</au><au>Guo, Xinhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harmonic Detection for Active Power Filter Based on Two-Step Improved EEMD</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The performance of active power filter (APF) mainly depends on its harmonic detection method. Empirical mode decomposition (EMD) is applied to APF because of its effectiveness for any complicated signal analysis. Ensemble empirical mode decomposition (EEMD) can suppress mode mixing caused by EMD to a certain extent, but the amplitude and energy of fundamental is severely attenuated. To solve this problem, in this article, the causes of attenuation are discussed from the perspective of intrinsic mode functions (IMFs) energy, and an approach based on two-step improved EEMD is proposed. The first improved step (FI-EEMD) is to suppress the mode mixing and fundamental attenuation by injecting white noise and analytical signal with determined parameters into the target signal. The parameters of the analytical signal are selected according to the power grid conditions and signal characteristics. The second improved step (SI-EEMD) puts forward a signal reconstruction method based on the distribution of IMF energy extreme points and the distinguishing law of signal and noise to reduce the influence of noise-dominated components. The results show that the two-step improved EEMD not only has high-quality extracted fundamental with low total harmonic distortion (THD) and energy attenuation, but also has good applicability to aperiodic and nonstationary signals, which greatly improve the harmonic detection accuracy of APF.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3146913</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8123-7573</orcidid><orcidid>https://orcid.org/0000-0002-5625-4267</orcidid><orcidid>https://orcid.org/0000-0002-2045-454X</orcidid><orcidid>https://orcid.org/0000-0001-7403-2396</orcidid><orcidid>https://orcid.org/0000-0002-6887-9037</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-10 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2022_3146913 |
source | IEEE Electronic Library Online |
subjects | Active filters Active power filter (APF) Attenuation Electric power grids Empirical analysis Energy distribution ensemble empirical mode decomposition (EEMD) fundamental attenuation Harmonic analysis Harmonic distortion intrinsic mode function (IMF) energy distribution Mathematical analysis Noise Parameters Power filters Power grids Power harmonic filters Signal analysis Signal reconstruction White noise |
title | Harmonic Detection for Active Power Filter Based on Two-Step Improved EEMD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harmonic%20Detection%20for%20Active%20Power%20Filter%20Based%20on%20Two-Step%20Improved%20EEMD&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Wang,%20Rongkun&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3146913&rft_dat=%3Cproquest_RIE%3E2635046056%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635046056&rft_id=info:pmid/&rft_ieee_id=9694635&rfr_iscdi=true |