Fingerprint-Based Localization Performance Analysis: From the Perspectives of Signal Measurement and Positioning Algorithm

This article analyzes the localization performance of fingerprinting positioning system from the perspectives of the signal measurement and positioning algorithm. Unlike the existing works which have not taken the influence of grid size into account, first of all, we construct a novel derivation mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-15
Hauptverfasser: Pu, Qiaolin, Ng, Joseph Kee-Yin, Zhou, Mu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 70
creator Pu, Qiaolin
Ng, Joseph Kee-Yin
Zhou, Mu
description This article analyzes the localization performance of fingerprinting positioning system from the perspectives of the signal measurement and positioning algorithm. Unlike the existing works which have not taken the influence of grid size into account, first of all, we construct a novel derivation model involving the grid size information. Then, from the signal measurement's perspective, the localization performance is analyzed based on our new model under two cases: with specific and nonspecific signal distributions. For the first case, we utilize the traditional knowledge of Cramér-Rao lower bound (CRLB) to rededuce it. For the second case, a Gaussian-Markov theorem method is introduced to conduct derivation. Furthermore, from the latter perspective, we first analyze the localization performance of the mostly used k -nearest neighbors (KNN) algorithm leveraging the probability density function (PDF) of these nearest neighbors. Then, a novel adaptive KNN algorithm is designed based on the derivation result, which has improved the location accuracy by about 20%. Finally, extensive simulations and real experiments are conducted to show the effectiveness of our claims.
doi_str_mv 10.1109/TIM.2021.3081172
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2021_3081172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9439869</ieee_id><sourcerecordid>2539353084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-da73d0670ff7351a485e584169ce96460660adfe7b7ebfada7f0f01f0d5206423</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWD_ugpeA562TzSbZeKtiVWhRUM9LujtpU7qbmmyF9teb0uJpDvO87wwPITcMhoyBvv96mw5zyNmQQ8mYyk_IgAmhMi1lfkoGAKzMdCHkObmIcQkAShZqQHZj180xrIPr-uzRRGzoxNdm5Xamd76jHxisD63paqSjzqy20cUHOg6-pf0C9-u4xrp3vxipt_TTzRNEp2jiJmCLXU9N19APH92-Lt2io9XcB9cv2ityZs0q4vVxXpLv8fPX02s2eX95expNspoL1WeNUbwBqcBaxQUzRSlQlAWTukYtCwlSgmksqpnCmTUJt2CBWWhEDrLI-SW5O_Sug__ZYOyrpd-E9GascsE1F8lYkSg4UHXwMQa0VXLSmrCtGFR7w1UyXO0NV0fDKXJ7iDhE_Md1wXUpNf8DwYh5Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539353084</pqid></control><display><type>article</type><title>Fingerprint-Based Localization Performance Analysis: From the Perspectives of Signal Measurement and Positioning Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Pu, Qiaolin ; Ng, Joseph Kee-Yin ; Zhou, Mu</creator><creatorcontrib>Pu, Qiaolin ; Ng, Joseph Kee-Yin ; Zhou, Mu</creatorcontrib><description>This article analyzes the localization performance of fingerprinting positioning system from the perspectives of the signal measurement and positioning algorithm. Unlike the existing works which have not taken the influence of grid size into account, first of all, we construct a novel derivation model involving the grid size information. Then, from the signal measurement's perspective, the localization performance is analyzed based on our new model under two cases: with specific and nonspecific signal distributions. For the first case, we utilize the traditional knowledge of Cramér-Rao lower bound (CRLB) to rededuce it. For the second case, a Gaussian-Markov theorem method is introduced to conduct derivation. Furthermore, from the latter perspective, we first analyze the localization performance of the mostly used &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;k &lt;/tex-math&gt;&lt;/inline-formula&gt;-nearest neighbors (KNN) algorithm leveraging the probability density function (PDF) of these nearest neighbors. Then, a novel adaptive KNN algorithm is designed based on the derivation result, which has improved the location accuracy by about 20%. Finally, extensive simulations and real experiments are conducted to show the effectiveness of our claims.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2021.3081172</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -nearest neighbors (KNN) ; Adaptive algorithms ; Algorithms ; Analytical models ; Cramer-Rao bounds ; Cramér–Rao lower bound (CRLB) ; Derivation ; Fingerprint recognition ; Fingerprinting ; Gaussian distribution ; Gaussian–Markov theorem ; Localization ; localization performance ; Location awareness ; Lower bounds ; Position measurement ; Probability density function ; Probability density functions ; Signal measurement ; Time measurement</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-da73d0670ff7351a485e584169ce96460660adfe7b7ebfada7f0f01f0d5206423</citedby><cites>FETCH-LOGICAL-c357t-da73d0670ff7351a485e584169ce96460660adfe7b7ebfada7f0f01f0d5206423</cites><orcidid>0000-0001-8286-4344 ; 0000-0003-3533-2227 ; 0000-0002-9357-6003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9439869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9439869$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pu, Qiaolin</creatorcontrib><creatorcontrib>Ng, Joseph Kee-Yin</creatorcontrib><creatorcontrib>Zhou, Mu</creatorcontrib><title>Fingerprint-Based Localization Performance Analysis: From the Perspectives of Signal Measurement and Positioning Algorithm</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This article analyzes the localization performance of fingerprinting positioning system from the perspectives of the signal measurement and positioning algorithm. Unlike the existing works which have not taken the influence of grid size into account, first of all, we construct a novel derivation model involving the grid size information. Then, from the signal measurement's perspective, the localization performance is analyzed based on our new model under two cases: with specific and nonspecific signal distributions. For the first case, we utilize the traditional knowledge of Cramér-Rao lower bound (CRLB) to rededuce it. For the second case, a Gaussian-Markov theorem method is introduced to conduct derivation. Furthermore, from the latter perspective, we first analyze the localization performance of the mostly used &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;k &lt;/tex-math&gt;&lt;/inline-formula&gt;-nearest neighbors (KNN) algorithm leveraging the probability density function (PDF) of these nearest neighbors. Then, a novel adaptive KNN algorithm is designed based on the derivation result, which has improved the location accuracy by about 20%. Finally, extensive simulations and real experiments are conducted to show the effectiveness of our claims.</description><subject>Adaptive &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -nearest neighbors (KNN)</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Analytical models</subject><subject>Cramer-Rao bounds</subject><subject>Cramér–Rao lower bound (CRLB)</subject><subject>Derivation</subject><subject>Fingerprint recognition</subject><subject>Fingerprinting</subject><subject>Gaussian distribution</subject><subject>Gaussian–Markov theorem</subject><subject>Localization</subject><subject>localization performance</subject><subject>Location awareness</subject><subject>Lower bounds</subject><subject>Position measurement</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Signal measurement</subject><subject>Time measurement</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWD_ugpeA562TzSbZeKtiVWhRUM9LujtpU7qbmmyF9teb0uJpDvO87wwPITcMhoyBvv96mw5zyNmQQ8mYyk_IgAmhMi1lfkoGAKzMdCHkObmIcQkAShZqQHZj180xrIPr-uzRRGzoxNdm5Xamd76jHxisD63paqSjzqy20cUHOg6-pf0C9-u4xrp3vxipt_TTzRNEp2jiJmCLXU9N19APH92-Lt2io9XcB9cv2ityZs0q4vVxXpLv8fPX02s2eX95expNspoL1WeNUbwBqcBaxQUzRSlQlAWTukYtCwlSgmksqpnCmTUJt2CBWWhEDrLI-SW5O_Sug__ZYOyrpd-E9GascsE1F8lYkSg4UHXwMQa0VXLSmrCtGFR7w1UyXO0NV0fDKXJ7iDhE_Md1wXUpNf8DwYh5Gg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Pu, Qiaolin</creator><creator>Ng, Joseph Kee-Yin</creator><creator>Zhou, Mu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8286-4344</orcidid><orcidid>https://orcid.org/0000-0003-3533-2227</orcidid><orcidid>https://orcid.org/0000-0002-9357-6003</orcidid></search><sort><creationdate>2021</creationdate><title>Fingerprint-Based Localization Performance Analysis: From the Perspectives of Signal Measurement and Positioning Algorithm</title><author>Pu, Qiaolin ; Ng, Joseph Kee-Yin ; Zhou, Mu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-da73d0670ff7351a485e584169ce96460660adfe7b7ebfada7f0f01f0d5206423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -nearest neighbors (KNN)</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Analytical models</topic><topic>Cramer-Rao bounds</topic><topic>Cramér–Rao lower bound (CRLB)</topic><topic>Derivation</topic><topic>Fingerprint recognition</topic><topic>Fingerprinting</topic><topic>Gaussian distribution</topic><topic>Gaussian–Markov theorem</topic><topic>Localization</topic><topic>localization performance</topic><topic>Location awareness</topic><topic>Lower bounds</topic><topic>Position measurement</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Signal measurement</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Qiaolin</creatorcontrib><creatorcontrib>Ng, Joseph Kee-Yin</creatorcontrib><creatorcontrib>Zhou, Mu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pu, Qiaolin</au><au>Ng, Joseph Kee-Yin</au><au>Zhou, Mu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingerprint-Based Localization Performance Analysis: From the Perspectives of Signal Measurement and Positioning Algorithm</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This article analyzes the localization performance of fingerprinting positioning system from the perspectives of the signal measurement and positioning algorithm. Unlike the existing works which have not taken the influence of grid size into account, first of all, we construct a novel derivation model involving the grid size information. Then, from the signal measurement's perspective, the localization performance is analyzed based on our new model under two cases: with specific and nonspecific signal distributions. For the first case, we utilize the traditional knowledge of Cramér-Rao lower bound (CRLB) to rededuce it. For the second case, a Gaussian-Markov theorem method is introduced to conduct derivation. Furthermore, from the latter perspective, we first analyze the localization performance of the mostly used &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;k &lt;/tex-math&gt;&lt;/inline-formula&gt;-nearest neighbors (KNN) algorithm leveraging the probability density function (PDF) of these nearest neighbors. Then, a novel adaptive KNN algorithm is designed based on the derivation result, which has improved the location accuracy by about 20%. Finally, extensive simulations and real experiments are conducted to show the effectiveness of our claims.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2021.3081172</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8286-4344</orcidid><orcidid>https://orcid.org/0000-0003-3533-2227</orcidid><orcidid>https://orcid.org/0000-0002-9357-6003</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-15
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2021_3081172
source IEEE Electronic Library (IEL)
subjects Adaptive <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -nearest neighbors (KNN)
Adaptive algorithms
Algorithms
Analytical models
Cramer-Rao bounds
Cramér–Rao lower bound (CRLB)
Derivation
Fingerprint recognition
Fingerprinting
Gaussian distribution
Gaussian–Markov theorem
Localization
localization performance
Location awareness
Lower bounds
Position measurement
Probability density function
Probability density functions
Signal measurement
Time measurement
title Fingerprint-Based Localization Performance Analysis: From the Perspectives of Signal Measurement and Positioning Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingerprint-Based%20Localization%20Performance%20Analysis:%20From%20the%20Perspectives%20of%20Signal%20Measurement%20and%20Positioning%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Pu,%20Qiaolin&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2021.3081172&rft_dat=%3Cproquest_RIE%3E2539353084%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539353084&rft_id=info:pmid/&rft_ieee_id=9439869&rfr_iscdi=true