Fingerprint-Based Localization Performance Analysis: From the Perspectives of Signal Measurement and Positioning Algorithm
This article analyzes the localization performance of fingerprinting positioning system from the perspectives of the signal measurement and positioning algorithm. Unlike the existing works which have not taken the influence of grid size into account, first of all, we construct a novel derivation mod...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 70 |
creator | Pu, Qiaolin Ng, Joseph Kee-Yin Zhou, Mu |
description | This article analyzes the localization performance of fingerprinting positioning system from the perspectives of the signal measurement and positioning algorithm. Unlike the existing works which have not taken the influence of grid size into account, first of all, we construct a novel derivation model involving the grid size information. Then, from the signal measurement's perspective, the localization performance is analyzed based on our new model under two cases: with specific and nonspecific signal distributions. For the first case, we utilize the traditional knowledge of Cramér-Rao lower bound (CRLB) to rededuce it. For the second case, a Gaussian-Markov theorem method is introduced to conduct derivation. Furthermore, from the latter perspective, we first analyze the localization performance of the mostly used k -nearest neighbors (KNN) algorithm leveraging the probability density function (PDF) of these nearest neighbors. Then, a novel adaptive KNN algorithm is designed based on the derivation result, which has improved the location accuracy by about 20%. Finally, extensive simulations and real experiments are conducted to show the effectiveness of our claims. |
doi_str_mv | 10.1109/TIM.2021.3081172 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2021_3081172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9439869</ieee_id><sourcerecordid>2539353084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-da73d0670ff7351a485e584169ce96460660adfe7b7ebfada7f0f01f0d5206423</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWD_ugpeA562TzSbZeKtiVWhRUM9LujtpU7qbmmyF9teb0uJpDvO87wwPITcMhoyBvv96mw5zyNmQQ8mYyk_IgAmhMi1lfkoGAKzMdCHkObmIcQkAShZqQHZj180xrIPr-uzRRGzoxNdm5Xamd76jHxisD63paqSjzqy20cUHOg6-pf0C9-u4xrp3vxipt_TTzRNEp2jiJmCLXU9N19APH92-Lt2io9XcB9cv2ityZs0q4vVxXpLv8fPX02s2eX95expNspoL1WeNUbwBqcBaxQUzRSlQlAWTukYtCwlSgmksqpnCmTUJt2CBWWhEDrLI-SW5O_Sug__ZYOyrpd-E9GascsE1F8lYkSg4UHXwMQa0VXLSmrCtGFR7w1UyXO0NV0fDKXJ7iDhE_Md1wXUpNf8DwYh5Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539353084</pqid></control><display><type>article</type><title>Fingerprint-Based Localization Performance Analysis: From the Perspectives of Signal Measurement and Positioning Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Pu, Qiaolin ; Ng, Joseph Kee-Yin ; Zhou, Mu</creator><creatorcontrib>Pu, Qiaolin ; Ng, Joseph Kee-Yin ; Zhou, Mu</creatorcontrib><description>This article analyzes the localization performance of fingerprinting positioning system from the perspectives of the signal measurement and positioning algorithm. Unlike the existing works which have not taken the influence of grid size into account, first of all, we construct a novel derivation model involving the grid size information. Then, from the signal measurement's perspective, the localization performance is analyzed based on our new model under two cases: with specific and nonspecific signal distributions. For the first case, we utilize the traditional knowledge of Cramér-Rao lower bound (CRLB) to rededuce it. For the second case, a Gaussian-Markov theorem method is introduced to conduct derivation. Furthermore, from the latter perspective, we first analyze the localization performance of the mostly used <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbors (KNN) algorithm leveraging the probability density function (PDF) of these nearest neighbors. Then, a novel adaptive KNN algorithm is designed based on the derivation result, which has improved the location accuracy by about 20%. Finally, extensive simulations and real experiments are conducted to show the effectiveness of our claims.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2021.3081172</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -nearest neighbors (KNN) ; Adaptive algorithms ; Algorithms ; Analytical models ; Cramer-Rao bounds ; Cramér–Rao lower bound (CRLB) ; Derivation ; Fingerprint recognition ; Fingerprinting ; Gaussian distribution ; Gaussian–Markov theorem ; Localization ; localization performance ; Location awareness ; Lower bounds ; Position measurement ; Probability density function ; Probability density functions ; Signal measurement ; Time measurement</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-da73d0670ff7351a485e584169ce96460660adfe7b7ebfada7f0f01f0d5206423</citedby><cites>FETCH-LOGICAL-c357t-da73d0670ff7351a485e584169ce96460660adfe7b7ebfada7f0f01f0d5206423</cites><orcidid>0000-0001-8286-4344 ; 0000-0003-3533-2227 ; 0000-0002-9357-6003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9439869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9439869$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pu, Qiaolin</creatorcontrib><creatorcontrib>Ng, Joseph Kee-Yin</creatorcontrib><creatorcontrib>Zhou, Mu</creatorcontrib><title>Fingerprint-Based Localization Performance Analysis: From the Perspectives of Signal Measurement and Positioning Algorithm</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This article analyzes the localization performance of fingerprinting positioning system from the perspectives of the signal measurement and positioning algorithm. Unlike the existing works which have not taken the influence of grid size into account, first of all, we construct a novel derivation model involving the grid size information. Then, from the signal measurement's perspective, the localization performance is analyzed based on our new model under two cases: with specific and nonspecific signal distributions. For the first case, we utilize the traditional knowledge of Cramér-Rao lower bound (CRLB) to rededuce it. For the second case, a Gaussian-Markov theorem method is introduced to conduct derivation. Furthermore, from the latter perspective, we first analyze the localization performance of the mostly used <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbors (KNN) algorithm leveraging the probability density function (PDF) of these nearest neighbors. Then, a novel adaptive KNN algorithm is designed based on the derivation result, which has improved the location accuracy by about 20%. Finally, extensive simulations and real experiments are conducted to show the effectiveness of our claims.</description><subject>Adaptive <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -nearest neighbors (KNN)</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Analytical models</subject><subject>Cramer-Rao bounds</subject><subject>Cramér–Rao lower bound (CRLB)</subject><subject>Derivation</subject><subject>Fingerprint recognition</subject><subject>Fingerprinting</subject><subject>Gaussian distribution</subject><subject>Gaussian–Markov theorem</subject><subject>Localization</subject><subject>localization performance</subject><subject>Location awareness</subject><subject>Lower bounds</subject><subject>Position measurement</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Signal measurement</subject><subject>Time measurement</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWD_ugpeA562TzSbZeKtiVWhRUM9LujtpU7qbmmyF9teb0uJpDvO87wwPITcMhoyBvv96mw5zyNmQQ8mYyk_IgAmhMi1lfkoGAKzMdCHkObmIcQkAShZqQHZj180xrIPr-uzRRGzoxNdm5Xamd76jHxisD63paqSjzqy20cUHOg6-pf0C9-u4xrp3vxipt_TTzRNEp2jiJmCLXU9N19APH92-Lt2io9XcB9cv2ityZs0q4vVxXpLv8fPX02s2eX95expNspoL1WeNUbwBqcBaxQUzRSlQlAWTukYtCwlSgmksqpnCmTUJt2CBWWhEDrLI-SW5O_Sug__ZYOyrpd-E9GascsE1F8lYkSg4UHXwMQa0VXLSmrCtGFR7w1UyXO0NV0fDKXJ7iDhE_Md1wXUpNf8DwYh5Gg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Pu, Qiaolin</creator><creator>Ng, Joseph Kee-Yin</creator><creator>Zhou, Mu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8286-4344</orcidid><orcidid>https://orcid.org/0000-0003-3533-2227</orcidid><orcidid>https://orcid.org/0000-0002-9357-6003</orcidid></search><sort><creationdate>2021</creationdate><title>Fingerprint-Based Localization Performance Analysis: From the Perspectives of Signal Measurement and Positioning Algorithm</title><author>Pu, Qiaolin ; Ng, Joseph Kee-Yin ; Zhou, Mu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-da73d0670ff7351a485e584169ce96460660adfe7b7ebfada7f0f01f0d5206423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -nearest neighbors (KNN)</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Analytical models</topic><topic>Cramer-Rao bounds</topic><topic>Cramér–Rao lower bound (CRLB)</topic><topic>Derivation</topic><topic>Fingerprint recognition</topic><topic>Fingerprinting</topic><topic>Gaussian distribution</topic><topic>Gaussian–Markov theorem</topic><topic>Localization</topic><topic>localization performance</topic><topic>Location awareness</topic><topic>Lower bounds</topic><topic>Position measurement</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Signal measurement</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Qiaolin</creatorcontrib><creatorcontrib>Ng, Joseph Kee-Yin</creatorcontrib><creatorcontrib>Zhou, Mu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pu, Qiaolin</au><au>Ng, Joseph Kee-Yin</au><au>Zhou, Mu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingerprint-Based Localization Performance Analysis: From the Perspectives of Signal Measurement and Positioning Algorithm</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This article analyzes the localization performance of fingerprinting positioning system from the perspectives of the signal measurement and positioning algorithm. Unlike the existing works which have not taken the influence of grid size into account, first of all, we construct a novel derivation model involving the grid size information. Then, from the signal measurement's perspective, the localization performance is analyzed based on our new model under two cases: with specific and nonspecific signal distributions. For the first case, we utilize the traditional knowledge of Cramér-Rao lower bound (CRLB) to rededuce it. For the second case, a Gaussian-Markov theorem method is introduced to conduct derivation. Furthermore, from the latter perspective, we first analyze the localization performance of the mostly used <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbors (KNN) algorithm leveraging the probability density function (PDF) of these nearest neighbors. Then, a novel adaptive KNN algorithm is designed based on the derivation result, which has improved the location accuracy by about 20%. Finally, extensive simulations and real experiments are conducted to show the effectiveness of our claims.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2021.3081172</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8286-4344</orcidid><orcidid>https://orcid.org/0000-0003-3533-2227</orcidid><orcidid>https://orcid.org/0000-0002-9357-6003</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-15 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2021_3081172 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -nearest neighbors (KNN) Adaptive algorithms Algorithms Analytical models Cramer-Rao bounds Cramér–Rao lower bound (CRLB) Derivation Fingerprint recognition Fingerprinting Gaussian distribution Gaussian–Markov theorem Localization localization performance Location awareness Lower bounds Position measurement Probability density function Probability density functions Signal measurement Time measurement |
title | Fingerprint-Based Localization Performance Analysis: From the Perspectives of Signal Measurement and Positioning Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingerprint-Based%20Localization%20Performance%20Analysis:%20From%20the%20Perspectives%20of%20Signal%20Measurement%20and%20Positioning%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Pu,%20Qiaolin&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2021.3081172&rft_dat=%3Cproquest_RIE%3E2539353084%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539353084&rft_id=info:pmid/&rft_ieee_id=9439869&rfr_iscdi=true |