Lkurtogram Guided Adaptive Empirical Wavelet Transform and Purified Instantaneous Energy Operation for Fault Diagnosis of Wind Turbine Bearing
The periodic impacts are regarded as the typical characteristics of local defect of wind turbine bearing. For this reason, it is significant to extract the periodic impacts from the original measured vibration signal with background noise interferences during the defect identification process. For t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-19 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 70 |
creator | Wang, Xiaolong Tang, Guiji Wang, Tai Zhang, Xiong Peng, Bo Dou, Longjiang He, Yuling |
description | The periodic impacts are regarded as the typical characteristics of local defect of wind turbine bearing. For this reason, it is significant to extract the periodic impacts from the original measured vibration signal with background noise interferences during the defect identification process. For the purpose of effectively solving this issue, an innovative diagnostic frame based on Lkurtogram guided adaptive empirical wavelet transform (LGAEWT) and purified instantaneous energy operation (PIEO) is put forward. Within this diagnostic frame, the L-kurtosis indicator guided wavelet equivalent filter band mergence is carried out to confirm the optimal filter boundary, then the resonance frequency band containing rich characteristic information can be extracted, and the characteristic sensitive component is able to be separated from the original vibration signal. In addition, a novel signal processing strategy called PIEO is presented to inhibit the background interferences and enhance the periodic impact signatures in sensitive components, and the purified instantaneous energy spectrum is adopted to replace the traditional envelope spectrum for characteristic frequency spectral lines identification. The feasibility of the proposed diagnostic frame has been demonstrated by the experimental signals and the actual engineering case, and the results manifest that it is suitable for bearing fault enhance detection under low signal-to-noise ratio (SNR) environment. Furthermore, the comparison results with the widely used Kurtogram, Autogram, and DWT methods indicate that this innovative diagnostic strategy has more prominent advantages on background interference suppression and weak characteristic intensification. |
doi_str_mv | 10.1109/TIM.2020.3043946 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2020_3043946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9293409</ieee_id><sourcerecordid>2472316882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-bb95f735f075a1e3398eec6d25f1b7124cb284dd086521bdd2a14295bdf0ecfa3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWB97wU3A9dQ8ZybLWqsWKnVRcTlkJjcltU3GZEbon_A3O6UiXDib850LH0I3lIwpJep-NX8dM8LImBPBlchP0IhKWWQqz9kpGhFCy0wJmZ-ji5Q2hJAiF8UI_Sw--9iFddQ7_Nw7AwZPjG479w14tmtddI3e4g_9DVvo8Cpqn2yIO6y9wW99dNYNxNynTvvhIPQJzzzE9R4vW4i6c8HjAcBPut92-NHptQ_JJRws_nDDxqqPtfOAH0BH59dX6MzqbYLrv7xE70-z1fQlWyyf59PJImuYol1W10ragktLCqkpcK5KgCY3TFpaF5SJpmalMIaUuWS0NoZpKpiStbEEGqv5Jbo77rYxfPWQumoT-uiHlxUTBeM0L0s2tMix1cSQUgRbtdHtdNxXlFQH69VgvTpYr_6sD8jtEXEA8F9XTHFBFP8F69SAjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472316882</pqid></control><display><type>article</type><title>Lkurtogram Guided Adaptive Empirical Wavelet Transform and Purified Instantaneous Energy Operation for Fault Diagnosis of Wind Turbine Bearing</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Xiaolong ; Tang, Guiji ; Wang, Tai ; Zhang, Xiong ; Peng, Bo ; Dou, Longjiang ; He, Yuling</creator><creatorcontrib>Wang, Xiaolong ; Tang, Guiji ; Wang, Tai ; Zhang, Xiong ; Peng, Bo ; Dou, Longjiang ; He, Yuling</creatorcontrib><description>The periodic impacts are regarded as the typical characteristics of local defect of wind turbine bearing. For this reason, it is significant to extract the periodic impacts from the original measured vibration signal with background noise interferences during the defect identification process. For the purpose of effectively solving this issue, an innovative diagnostic frame based on Lkurtogram guided adaptive empirical wavelet transform (LGAEWT) and purified instantaneous energy operation (PIEO) is put forward. Within this diagnostic frame, the L-kurtosis indicator guided wavelet equivalent filter band mergence is carried out to confirm the optimal filter boundary, then the resonance frequency band containing rich characteristic information can be extracted, and the characteristic sensitive component is able to be separated from the original vibration signal. In addition, a novel signal processing strategy called PIEO is presented to inhibit the background interferences and enhance the periodic impact signatures in sensitive components, and the purified instantaneous energy spectrum is adopted to replace the traditional envelope spectrum for characteristic frequency spectral lines identification. The feasibility of the proposed diagnostic frame has been demonstrated by the experimental signals and the actual engineering case, and the results manifest that it is suitable for bearing fault enhance detection under low signal-to-noise ratio (SNR) environment. Furthermore, the comparison results with the widely used Kurtogram, Autogram, and DWT methods indicate that this innovative diagnostic strategy has more prominent advantages on background interference suppression and weak characteristic intensification.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2020.3043946</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Background noise ; Diagnostic systems ; Empirical wavelet transform (EWT) ; Energy spectra ; Fault diagnosis ; Filter banks ; Frequencies ; instantaneous energy signal ; Kurtosis ; L-kurtosis ; Line spectra ; Resonant frequency ; Signal processing ; Signal to noise ratio ; Transforms ; Vibration measurement ; Vibrations ; Wavelet packets ; Wavelet transforms ; wind turbine bearing ; Wind turbines</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-19</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-bb95f735f075a1e3398eec6d25f1b7124cb284dd086521bdd2a14295bdf0ecfa3</citedby><cites>FETCH-LOGICAL-c291t-bb95f735f075a1e3398eec6d25f1b7124cb284dd086521bdd2a14295bdf0ecfa3</cites><orcidid>0000-0002-4415-4007 ; 0000-0003-3470-261X ; 0000-0001-7038-2073 ; 0000-0002-6404-8041 ; 0000-0002-5069-865X ; 0000-0002-5061-2529 ; 0000-0003-2719-8128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9293409$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9293409$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Xiaolong</creatorcontrib><creatorcontrib>Tang, Guiji</creatorcontrib><creatorcontrib>Wang, Tai</creatorcontrib><creatorcontrib>Zhang, Xiong</creatorcontrib><creatorcontrib>Peng, Bo</creatorcontrib><creatorcontrib>Dou, Longjiang</creatorcontrib><creatorcontrib>He, Yuling</creatorcontrib><title>Lkurtogram Guided Adaptive Empirical Wavelet Transform and Purified Instantaneous Energy Operation for Fault Diagnosis of Wind Turbine Bearing</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The periodic impacts are regarded as the typical characteristics of local defect of wind turbine bearing. For this reason, it is significant to extract the periodic impacts from the original measured vibration signal with background noise interferences during the defect identification process. For the purpose of effectively solving this issue, an innovative diagnostic frame based on Lkurtogram guided adaptive empirical wavelet transform (LGAEWT) and purified instantaneous energy operation (PIEO) is put forward. Within this diagnostic frame, the L-kurtosis indicator guided wavelet equivalent filter band mergence is carried out to confirm the optimal filter boundary, then the resonance frequency band containing rich characteristic information can be extracted, and the characteristic sensitive component is able to be separated from the original vibration signal. In addition, a novel signal processing strategy called PIEO is presented to inhibit the background interferences and enhance the periodic impact signatures in sensitive components, and the purified instantaneous energy spectrum is adopted to replace the traditional envelope spectrum for characteristic frequency spectral lines identification. The feasibility of the proposed diagnostic frame has been demonstrated by the experimental signals and the actual engineering case, and the results manifest that it is suitable for bearing fault enhance detection under low signal-to-noise ratio (SNR) environment. Furthermore, the comparison results with the widely used Kurtogram, Autogram, and DWT methods indicate that this innovative diagnostic strategy has more prominent advantages on background interference suppression and weak characteristic intensification.</description><subject>Background noise</subject><subject>Diagnostic systems</subject><subject>Empirical wavelet transform (EWT)</subject><subject>Energy spectra</subject><subject>Fault diagnosis</subject><subject>Filter banks</subject><subject>Frequencies</subject><subject>instantaneous energy signal</subject><subject>Kurtosis</subject><subject>L-kurtosis</subject><subject>Line spectra</subject><subject>Resonant frequency</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Transforms</subject><subject>Vibration measurement</subject><subject>Vibrations</subject><subject>Wavelet packets</subject><subject>Wavelet transforms</subject><subject>wind turbine bearing</subject><subject>Wind turbines</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWB97wU3A9dQ8ZybLWqsWKnVRcTlkJjcltU3GZEbon_A3O6UiXDib850LH0I3lIwpJep-NX8dM8LImBPBlchP0IhKWWQqz9kpGhFCy0wJmZ-ji5Q2hJAiF8UI_Sw--9iFddQ7_Nw7AwZPjG479w14tmtddI3e4g_9DVvo8Cpqn2yIO6y9wW99dNYNxNynTvvhIPQJzzzE9R4vW4i6c8HjAcBPut92-NHptQ_JJRws_nDDxqqPtfOAH0BH59dX6MzqbYLrv7xE70-z1fQlWyyf59PJImuYol1W10ragktLCqkpcK5KgCY3TFpaF5SJpmalMIaUuWS0NoZpKpiStbEEGqv5Jbo77rYxfPWQumoT-uiHlxUTBeM0L0s2tMix1cSQUgRbtdHtdNxXlFQH69VgvTpYr_6sD8jtEXEA8F9XTHFBFP8F69SAjA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Xiaolong</creator><creator>Tang, Guiji</creator><creator>Wang, Tai</creator><creator>Zhang, Xiong</creator><creator>Peng, Bo</creator><creator>Dou, Longjiang</creator><creator>He, Yuling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4415-4007</orcidid><orcidid>https://orcid.org/0000-0003-3470-261X</orcidid><orcidid>https://orcid.org/0000-0001-7038-2073</orcidid><orcidid>https://orcid.org/0000-0002-6404-8041</orcidid><orcidid>https://orcid.org/0000-0002-5069-865X</orcidid><orcidid>https://orcid.org/0000-0002-5061-2529</orcidid><orcidid>https://orcid.org/0000-0003-2719-8128</orcidid></search><sort><creationdate>2021</creationdate><title>Lkurtogram Guided Adaptive Empirical Wavelet Transform and Purified Instantaneous Energy Operation for Fault Diagnosis of Wind Turbine Bearing</title><author>Wang, Xiaolong ; Tang, Guiji ; Wang, Tai ; Zhang, Xiong ; Peng, Bo ; Dou, Longjiang ; He, Yuling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-bb95f735f075a1e3398eec6d25f1b7124cb284dd086521bdd2a14295bdf0ecfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Background noise</topic><topic>Diagnostic systems</topic><topic>Empirical wavelet transform (EWT)</topic><topic>Energy spectra</topic><topic>Fault diagnosis</topic><topic>Filter banks</topic><topic>Frequencies</topic><topic>instantaneous energy signal</topic><topic>Kurtosis</topic><topic>L-kurtosis</topic><topic>Line spectra</topic><topic>Resonant frequency</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Transforms</topic><topic>Vibration measurement</topic><topic>Vibrations</topic><topic>Wavelet packets</topic><topic>Wavelet transforms</topic><topic>wind turbine bearing</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaolong</creatorcontrib><creatorcontrib>Tang, Guiji</creatorcontrib><creatorcontrib>Wang, Tai</creatorcontrib><creatorcontrib>Zhang, Xiong</creatorcontrib><creatorcontrib>Peng, Bo</creatorcontrib><creatorcontrib>Dou, Longjiang</creatorcontrib><creatorcontrib>He, Yuling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Xiaolong</au><au>Tang, Guiji</au><au>Wang, Tai</au><au>Zhang, Xiong</au><au>Peng, Bo</au><au>Dou, Longjiang</au><au>He, Yuling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lkurtogram Guided Adaptive Empirical Wavelet Transform and Purified Instantaneous Energy Operation for Fault Diagnosis of Wind Turbine Bearing</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The periodic impacts are regarded as the typical characteristics of local defect of wind turbine bearing. For this reason, it is significant to extract the periodic impacts from the original measured vibration signal with background noise interferences during the defect identification process. For the purpose of effectively solving this issue, an innovative diagnostic frame based on Lkurtogram guided adaptive empirical wavelet transform (LGAEWT) and purified instantaneous energy operation (PIEO) is put forward. Within this diagnostic frame, the L-kurtosis indicator guided wavelet equivalent filter band mergence is carried out to confirm the optimal filter boundary, then the resonance frequency band containing rich characteristic information can be extracted, and the characteristic sensitive component is able to be separated from the original vibration signal. In addition, a novel signal processing strategy called PIEO is presented to inhibit the background interferences and enhance the periodic impact signatures in sensitive components, and the purified instantaneous energy spectrum is adopted to replace the traditional envelope spectrum for characteristic frequency spectral lines identification. The feasibility of the proposed diagnostic frame has been demonstrated by the experimental signals and the actual engineering case, and the results manifest that it is suitable for bearing fault enhance detection under low signal-to-noise ratio (SNR) environment. Furthermore, the comparison results with the widely used Kurtogram, Autogram, and DWT methods indicate that this innovative diagnostic strategy has more prominent advantages on background interference suppression and weak characteristic intensification.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2020.3043946</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4415-4007</orcidid><orcidid>https://orcid.org/0000-0003-3470-261X</orcidid><orcidid>https://orcid.org/0000-0001-7038-2073</orcidid><orcidid>https://orcid.org/0000-0002-6404-8041</orcidid><orcidid>https://orcid.org/0000-0002-5069-865X</orcidid><orcidid>https://orcid.org/0000-0002-5061-2529</orcidid><orcidid>https://orcid.org/0000-0003-2719-8128</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-19 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2020_3043946 |
source | IEEE Electronic Library (IEL) |
subjects | Background noise Diagnostic systems Empirical wavelet transform (EWT) Energy spectra Fault diagnosis Filter banks Frequencies instantaneous energy signal Kurtosis L-kurtosis Line spectra Resonant frequency Signal processing Signal to noise ratio Transforms Vibration measurement Vibrations Wavelet packets Wavelet transforms wind turbine bearing Wind turbines |
title | Lkurtogram Guided Adaptive Empirical Wavelet Transform and Purified Instantaneous Energy Operation for Fault Diagnosis of Wind Turbine Bearing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lkurtogram%20Guided%20Adaptive%20Empirical%20Wavelet%20Transform%20and%20Purified%20Instantaneous%20Energy%20Operation%20for%20Fault%20Diagnosis%20of%20Wind%20Turbine%20Bearing&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Wang,%20Xiaolong&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2020.3043946&rft_dat=%3Cproquest_RIE%3E2472316882%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472316882&rft_id=info:pmid/&rft_ieee_id=9293409&rfr_iscdi=true |