Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems
The detection of fastener defects is an important task in railway inspection systems, and it is frequently performed to ensure the safety of train traffic. Traditional inspection is usually operated by trained workers who walk along railway lines to search for potential risks. However, the manual in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2014-04, Vol.63 (4), p.877-888 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 888 |
---|---|
container_issue | 4 |
container_start_page | 877 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 63 |
creator | Feng, Hao Jiang, Zhiguo Xie, Fengying Yang, Ping Shi, Jun Chen, Long |
description | The detection of fastener defects is an important task in railway inspection systems, and it is frequently performed to ensure the safety of train traffic. Traditional inspection is usually operated by trained workers who walk along railway lines to search for potential risks. However, the manual inspection is very slow, costly, and dangerous. This paper proposes an automatic visual inspection system for detecting partially worn and completely missing fasteners using probabilistic topic model. Specifically, our method is able to simultaneously model diverse types of fasteners with different orientations and illumination conditions using unlabeled data. To assess the damages, the test fasteners are compared with the trained models and automatically ranked into three levels based on the likelihood probability. The experimental results demonstrate the effectiveness of this method. |
doi_str_mv | 10.1109/TIM.2013.2283741 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2013_2283741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6630109</ieee_id><sourcerecordid>3244503701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-5043895d37864ae94ea8c662c91961cf2fea402bc1adec8c1d5a3f6b58403ef53</originalsourceid><addsrcrecordid>eNpdkM1Lw0AUxBdRsFbvgpeAFy-p-53kWKvVQkXQ6nV53byFLfmo2QTpf--WFg-e5vH4zTAMIdeMThijxf1q8TrhlIkJ57nIJDshI6ZUlhZa81MyopTlaSGVPicXIWwopZmW2YjAdOjbGnpvkzmEHhvsklkFIXjnbXy3TQJNmTyiQ9tH6aPsn75JvnyIV_oAAcvkHXz1A7tk0YTtEfnYxbw6XJIzB1XAq6OOyef8aTV7SZdvz4vZdJlakbE-VVSKvFClyHItAQuJkNvY3Ras0Mw67hAk5WvLoESbW1YqEE6vVS6pQKfEmNwdcrdd-z1g6E3tg8WqggbbIRimOC20ihLR23_oph26JraLFNUZF5zpSNEDZbs2hA6d2Xa-hm5nGDX7zU3c3Ow3N8fNo-XmYPGI-IdrLWjExS9T3n0h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506723216</pqid></control><display><type>article</type><title>Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Hao ; Jiang, Zhiguo ; Xie, Fengying ; Yang, Ping ; Shi, Jun ; Chen, Long</creator><creatorcontrib>Feng, Hao ; Jiang, Zhiguo ; Xie, Fengying ; Yang, Ping ; Shi, Jun ; Chen, Long</creatorcontrib><description>The detection of fastener defects is an important task in railway inspection systems, and it is frequently performed to ensure the safety of train traffic. Traditional inspection is usually operated by trained workers who walk along railway lines to search for potential risks. However, the manual inspection is very slow, costly, and dangerous. This paper proposes an automatic visual inspection system for detecting partially worn and completely missing fasteners using probabilistic topic model. Specifically, our method is able to simultaneously model diverse types of fasteners with different orientations and illumination conditions using unlabeled data. To assess the damages, the test fasteners are compared with the trained models and automatically ranked into three levels based on the likelihood probability. The experimental results demonstrate the effectiveness of this method.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2013.2283741</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Defects ; Fastener ; Fasteners ; Inspection ; latent Dirichlet allocation (LDA) ; Lighting ; Probabilistic logic ; Rail transportation ; Railroads ; railway ; Railway engineering ; Railways ; Searching ; structure modeling ; Trains ; visual inspection ; Visualization</subject><ispartof>IEEE transactions on instrumentation and measurement, 2014-04, Vol.63 (4), p.877-888</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-5043895d37864ae94ea8c662c91961cf2fea402bc1adec8c1d5a3f6b58403ef53</citedby><cites>FETCH-LOGICAL-c371t-5043895d37864ae94ea8c662c91961cf2fea402bc1adec8c1d5a3f6b58403ef53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6630109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6630109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Hao</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Xie, Fengying</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Shi, Jun</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><title>Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The detection of fastener defects is an important task in railway inspection systems, and it is frequently performed to ensure the safety of train traffic. Traditional inspection is usually operated by trained workers who walk along railway lines to search for potential risks. However, the manual inspection is very slow, costly, and dangerous. This paper proposes an automatic visual inspection system for detecting partially worn and completely missing fasteners using probabilistic topic model. Specifically, our method is able to simultaneously model diverse types of fasteners with different orientations and illumination conditions using unlabeled data. To assess the damages, the test fasteners are compared with the trained models and automatically ranked into three levels based on the likelihood probability. The experimental results demonstrate the effectiveness of this method.</description><subject>Computational modeling</subject><subject>Defects</subject><subject>Fastener</subject><subject>Fasteners</subject><subject>Inspection</subject><subject>latent Dirichlet allocation (LDA)</subject><subject>Lighting</subject><subject>Probabilistic logic</subject><subject>Rail transportation</subject><subject>Railroads</subject><subject>railway</subject><subject>Railway engineering</subject><subject>Railways</subject><subject>Searching</subject><subject>structure modeling</subject><subject>Trains</subject><subject>visual inspection</subject><subject>Visualization</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AUxBdRsFbvgpeAFy-p-53kWKvVQkXQ6nV53byFLfmo2QTpf--WFg-e5vH4zTAMIdeMThijxf1q8TrhlIkJ57nIJDshI6ZUlhZa81MyopTlaSGVPicXIWwopZmW2YjAdOjbGnpvkzmEHhvsklkFIXjnbXy3TQJNmTyiQ9tH6aPsn75JvnyIV_oAAcvkHXz1A7tk0YTtEfnYxbw6XJIzB1XAq6OOyef8aTV7SZdvz4vZdJlakbE-VVSKvFClyHItAQuJkNvY3Ras0Mw67hAk5WvLoESbW1YqEE6vVS6pQKfEmNwdcrdd-z1g6E3tg8WqggbbIRimOC20ihLR23_oph26JraLFNUZF5zpSNEDZbs2hA6d2Xa-hm5nGDX7zU3c3Ow3N8fNo-XmYPGI-IdrLWjExS9T3n0h</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Feng, Hao</creator><creator>Jiang, Zhiguo</creator><creator>Xie, Fengying</creator><creator>Yang, Ping</creator><creator>Shi, Jun</creator><creator>Chen, Long</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140401</creationdate><title>Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems</title><author>Feng, Hao ; Jiang, Zhiguo ; Xie, Fengying ; Yang, Ping ; Shi, Jun ; Chen, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-5043895d37864ae94ea8c662c91961cf2fea402bc1adec8c1d5a3f6b58403ef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational modeling</topic><topic>Defects</topic><topic>Fastener</topic><topic>Fasteners</topic><topic>Inspection</topic><topic>latent Dirichlet allocation (LDA)</topic><topic>Lighting</topic><topic>Probabilistic logic</topic><topic>Rail transportation</topic><topic>Railroads</topic><topic>railway</topic><topic>Railway engineering</topic><topic>Railways</topic><topic>Searching</topic><topic>structure modeling</topic><topic>Trains</topic><topic>visual inspection</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Hao</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Xie, Fengying</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Shi, Jun</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Hao</au><au>Jiang, Zhiguo</au><au>Xie, Fengying</au><au>Yang, Ping</au><au>Shi, Jun</au><au>Chen, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>63</volume><issue>4</issue><spage>877</spage><epage>888</epage><pages>877-888</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The detection of fastener defects is an important task in railway inspection systems, and it is frequently performed to ensure the safety of train traffic. Traditional inspection is usually operated by trained workers who walk along railway lines to search for potential risks. However, the manual inspection is very slow, costly, and dangerous. This paper proposes an automatic visual inspection system for detecting partially worn and completely missing fasteners using probabilistic topic model. Specifically, our method is able to simultaneously model diverse types of fasteners with different orientations and illumination conditions using unlabeled data. To assess the damages, the test fasteners are compared with the trained models and automatically ranked into three levels based on the likelihood probability. The experimental results demonstrate the effectiveness of this method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2013.2283741</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2014-04, Vol.63 (4), p.877-888 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2013_2283741 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Defects Fastener Fasteners Inspection latent Dirichlet allocation (LDA) Lighting Probabilistic logic Rail transportation Railroads railway Railway engineering Railways Searching structure modeling Trains visual inspection Visualization |
title | Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Fastener%20Classification%20and%20Defect%20Detection%20in%20Vision-Based%20Railway%20Inspection%20Systems&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Feng,%20Hao&rft.date=2014-04-01&rft.volume=63&rft.issue=4&rft.spage=877&rft.epage=888&rft.pages=877-888&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2013.2283741&rft_dat=%3Cproquest_RIE%3E3244503701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506723216&rft_id=info:pmid/&rft_ieee_id=6630109&rfr_iscdi=true |