Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems

The detection of fastener defects is an important task in railway inspection systems, and it is frequently performed to ensure the safety of train traffic. Traditional inspection is usually operated by trained workers who walk along railway lines to search for potential risks. However, the manual in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2014-04, Vol.63 (4), p.877-888
Hauptverfasser: Feng, Hao, Jiang, Zhiguo, Xie, Fengying, Yang, Ping, Shi, Jun, Chen, Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 888
container_issue 4
container_start_page 877
container_title IEEE transactions on instrumentation and measurement
container_volume 63
creator Feng, Hao
Jiang, Zhiguo
Xie, Fengying
Yang, Ping
Shi, Jun
Chen, Long
description The detection of fastener defects is an important task in railway inspection systems, and it is frequently performed to ensure the safety of train traffic. Traditional inspection is usually operated by trained workers who walk along railway lines to search for potential risks. However, the manual inspection is very slow, costly, and dangerous. This paper proposes an automatic visual inspection system for detecting partially worn and completely missing fasteners using probabilistic topic model. Specifically, our method is able to simultaneously model diverse types of fasteners with different orientations and illumination conditions using unlabeled data. To assess the damages, the test fasteners are compared with the trained models and automatically ranked into three levels based on the likelihood probability. The experimental results demonstrate the effectiveness of this method.
doi_str_mv 10.1109/TIM.2013.2283741
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2013_2283741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6630109</ieee_id><sourcerecordid>3244503701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-5043895d37864ae94ea8c662c91961cf2fea402bc1adec8c1d5a3f6b58403ef53</originalsourceid><addsrcrecordid>eNpdkM1Lw0AUxBdRsFbvgpeAFy-p-53kWKvVQkXQ6nV53byFLfmo2QTpf--WFg-e5vH4zTAMIdeMThijxf1q8TrhlIkJ57nIJDshI6ZUlhZa81MyopTlaSGVPicXIWwopZmW2YjAdOjbGnpvkzmEHhvsklkFIXjnbXy3TQJNmTyiQ9tH6aPsn75JvnyIV_oAAcvkHXz1A7tk0YTtEfnYxbw6XJIzB1XAq6OOyef8aTV7SZdvz4vZdJlakbE-VVSKvFClyHItAQuJkNvY3Ras0Mw67hAk5WvLoESbW1YqEE6vVS6pQKfEmNwdcrdd-z1g6E3tg8WqggbbIRimOC20ihLR23_oph26JraLFNUZF5zpSNEDZbs2hA6d2Xa-hm5nGDX7zU3c3Ow3N8fNo-XmYPGI-IdrLWjExS9T3n0h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506723216</pqid></control><display><type>article</type><title>Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Hao ; Jiang, Zhiguo ; Xie, Fengying ; Yang, Ping ; Shi, Jun ; Chen, Long</creator><creatorcontrib>Feng, Hao ; Jiang, Zhiguo ; Xie, Fengying ; Yang, Ping ; Shi, Jun ; Chen, Long</creatorcontrib><description>The detection of fastener defects is an important task in railway inspection systems, and it is frequently performed to ensure the safety of train traffic. Traditional inspection is usually operated by trained workers who walk along railway lines to search for potential risks. However, the manual inspection is very slow, costly, and dangerous. This paper proposes an automatic visual inspection system for detecting partially worn and completely missing fasteners using probabilistic topic model. Specifically, our method is able to simultaneously model diverse types of fasteners with different orientations and illumination conditions using unlabeled data. To assess the damages, the test fasteners are compared with the trained models and automatically ranked into three levels based on the likelihood probability. The experimental results demonstrate the effectiveness of this method.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2013.2283741</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Defects ; Fastener ; Fasteners ; Inspection ; latent Dirichlet allocation (LDA) ; Lighting ; Probabilistic logic ; Rail transportation ; Railroads ; railway ; Railway engineering ; Railways ; Searching ; structure modeling ; Trains ; visual inspection ; Visualization</subject><ispartof>IEEE transactions on instrumentation and measurement, 2014-04, Vol.63 (4), p.877-888</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-5043895d37864ae94ea8c662c91961cf2fea402bc1adec8c1d5a3f6b58403ef53</citedby><cites>FETCH-LOGICAL-c371t-5043895d37864ae94ea8c662c91961cf2fea402bc1adec8c1d5a3f6b58403ef53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6630109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6630109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Hao</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Xie, Fengying</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Shi, Jun</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><title>Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The detection of fastener defects is an important task in railway inspection systems, and it is frequently performed to ensure the safety of train traffic. Traditional inspection is usually operated by trained workers who walk along railway lines to search for potential risks. However, the manual inspection is very slow, costly, and dangerous. This paper proposes an automatic visual inspection system for detecting partially worn and completely missing fasteners using probabilistic topic model. Specifically, our method is able to simultaneously model diverse types of fasteners with different orientations and illumination conditions using unlabeled data. To assess the damages, the test fasteners are compared with the trained models and automatically ranked into three levels based on the likelihood probability. The experimental results demonstrate the effectiveness of this method.</description><subject>Computational modeling</subject><subject>Defects</subject><subject>Fastener</subject><subject>Fasteners</subject><subject>Inspection</subject><subject>latent Dirichlet allocation (LDA)</subject><subject>Lighting</subject><subject>Probabilistic logic</subject><subject>Rail transportation</subject><subject>Railroads</subject><subject>railway</subject><subject>Railway engineering</subject><subject>Railways</subject><subject>Searching</subject><subject>structure modeling</subject><subject>Trains</subject><subject>visual inspection</subject><subject>Visualization</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AUxBdRsFbvgpeAFy-p-53kWKvVQkXQ6nV53byFLfmo2QTpf--WFg-e5vH4zTAMIdeMThijxf1q8TrhlIkJ57nIJDshI6ZUlhZa81MyopTlaSGVPicXIWwopZmW2YjAdOjbGnpvkzmEHhvsklkFIXjnbXy3TQJNmTyiQ9tH6aPsn75JvnyIV_oAAcvkHXz1A7tk0YTtEfnYxbw6XJIzB1XAq6OOyef8aTV7SZdvz4vZdJlakbE-VVSKvFClyHItAQuJkNvY3Ras0Mw67hAk5WvLoESbW1YqEE6vVS6pQKfEmNwdcrdd-z1g6E3tg8WqggbbIRimOC20ihLR23_oph26JraLFNUZF5zpSNEDZbs2hA6d2Xa-hm5nGDX7zU3c3Ow3N8fNo-XmYPGI-IdrLWjExS9T3n0h</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Feng, Hao</creator><creator>Jiang, Zhiguo</creator><creator>Xie, Fengying</creator><creator>Yang, Ping</creator><creator>Shi, Jun</creator><creator>Chen, Long</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140401</creationdate><title>Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems</title><author>Feng, Hao ; Jiang, Zhiguo ; Xie, Fengying ; Yang, Ping ; Shi, Jun ; Chen, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-5043895d37864ae94ea8c662c91961cf2fea402bc1adec8c1d5a3f6b58403ef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational modeling</topic><topic>Defects</topic><topic>Fastener</topic><topic>Fasteners</topic><topic>Inspection</topic><topic>latent Dirichlet allocation (LDA)</topic><topic>Lighting</topic><topic>Probabilistic logic</topic><topic>Rail transportation</topic><topic>Railroads</topic><topic>railway</topic><topic>Railway engineering</topic><topic>Railways</topic><topic>Searching</topic><topic>structure modeling</topic><topic>Trains</topic><topic>visual inspection</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Hao</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Xie, Fengying</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Shi, Jun</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Hao</au><au>Jiang, Zhiguo</au><au>Xie, Fengying</au><au>Yang, Ping</au><au>Shi, Jun</au><au>Chen, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>63</volume><issue>4</issue><spage>877</spage><epage>888</epage><pages>877-888</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The detection of fastener defects is an important task in railway inspection systems, and it is frequently performed to ensure the safety of train traffic. Traditional inspection is usually operated by trained workers who walk along railway lines to search for potential risks. However, the manual inspection is very slow, costly, and dangerous. This paper proposes an automatic visual inspection system for detecting partially worn and completely missing fasteners using probabilistic topic model. Specifically, our method is able to simultaneously model diverse types of fasteners with different orientations and illumination conditions using unlabeled data. To assess the damages, the test fasteners are compared with the trained models and automatically ranked into three levels based on the likelihood probability. The experimental results demonstrate the effectiveness of this method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2013.2283741</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2014-04, Vol.63 (4), p.877-888
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2013_2283741
source IEEE Electronic Library (IEL)
subjects Computational modeling
Defects
Fastener
Fasteners
Inspection
latent Dirichlet allocation (LDA)
Lighting
Probabilistic logic
Rail transportation
Railroads
railway
Railway engineering
Railways
Searching
structure modeling
Trains
visual inspection
Visualization
title Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Fastener%20Classification%20and%20Defect%20Detection%20in%20Vision-Based%20Railway%20Inspection%20Systems&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Feng,%20Hao&rft.date=2014-04-01&rft.volume=63&rft.issue=4&rft.spage=877&rft.epage=888&rft.pages=877-888&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2013.2283741&rft_dat=%3Cproquest_RIE%3E3244503701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506723216&rft_id=info:pmid/&rft_ieee_id=6630109&rfr_iscdi=true