Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage
This paper proposes a probabilistic sensor model for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviour and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placem...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2013-02, Vol.62 (2), p.293-303 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | 2 |
container_start_page | 293 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 62 |
creator | Akbarzadeh, V. Gagne, C. Parizeau, M. Argany, M. Mostafavi, M. A. |
description | This paper proposes a probabilistic sensor model for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviour and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel probabilistic sensing model for sensors with line-of-sight-based coverage (e.g., cameras) to tackle the sensor placement problem for these sensors. The probabilistic sensing model consists of membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, limited-memory Broyden-Fletcher-Goldfarb-Shanno method, and covariance matrix adaptation evolution strategy. |
doi_str_mv | 10.1109/TIM.2012.2214952 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2012_2214952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6334453</ieee_id><sourcerecordid>10_1109_TIM_2012_2214952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-a945d6d3f0d0821d3f0c32cc7183d40aabdc002b85fabd4e38294d7a3fbca2d63</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWKv3gjd5gdTJcXcvtXgotLTQeilLNoca2W5Ksgj69G5t8er_GOYfhg-hWwoTSqG638wWEwaUTRijopLsDI2olAWplGLnaARAS1IJqS7RVc6fAFAoUYzQ-yrFRjehDbkPBq9dl0O3xYtoXYt9TH-TIVatNm7nuh4v933YhR_dh9jhR52dxQPMQ-dI9GQdth89nsYvl_TWXaMLr9vsbk45Rm_PT5vpK5kvX2bThzkxHGRP9PCYVZZ7sFAyegDDmTEFLbkVoHVjDQBrSukHFI6XrBK20Nw3RjOr-BjB8a5JMefkfL1PYafTd02hPuipBz31QU990jNU7o6V4Jz7X1ecCyE5_wU-PGJt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage</title><source>IEEE Electronic Library (IEL)</source><creator>Akbarzadeh, V. ; Gagne, C. ; Parizeau, M. ; Argany, M. ; Mostafavi, M. A.</creator><creatorcontrib>Akbarzadeh, V. ; Gagne, C. ; Parizeau, M. ; Argany, M. ; Mostafavi, M. A.</creatorcontrib><description>This paper proposes a probabilistic sensor model for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviour and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel probabilistic sensing model for sensors with line-of-sight-based coverage (e.g., cameras) to tackle the sensor placement problem for these sensors. The probabilistic sensing model consists of membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, limited-memory Broyden-Fletcher-Goldfarb-Shanno method, and covariance matrix adaptation evolution strategy.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2012.2214952</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Digital elevation models ; Environmental factors ; evolutionary computation ; geographic information systems ; optimization ; Optimization methods ; Probabilistic logic ; Sensors ; Wireless sensor networks</subject><ispartof>IEEE transactions on instrumentation and measurement, 2013-02, Vol.62 (2), p.293-303</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-a945d6d3f0d0821d3f0c32cc7183d40aabdc002b85fabd4e38294d7a3fbca2d63</citedby><cites>FETCH-LOGICAL-c305t-a945d6d3f0d0821d3f0c32cc7183d40aabdc002b85fabd4e38294d7a3fbca2d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6334453$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6334453$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akbarzadeh, V.</creatorcontrib><creatorcontrib>Gagne, C.</creatorcontrib><creatorcontrib>Parizeau, M.</creatorcontrib><creatorcontrib>Argany, M.</creatorcontrib><creatorcontrib>Mostafavi, M. A.</creatorcontrib><title>Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This paper proposes a probabilistic sensor model for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviour and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel probabilistic sensing model for sensors with line-of-sight-based coverage (e.g., cameras) to tackle the sensor placement problem for these sensors. The probabilistic sensing model consists of membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, limited-memory Broyden-Fletcher-Goldfarb-Shanno method, and covariance matrix adaptation evolution strategy.</description><subject>Adaptation models</subject><subject>Digital elevation models</subject><subject>Environmental factors</subject><subject>evolutionary computation</subject><subject>geographic information systems</subject><subject>optimization</subject><subject>Optimization methods</subject><subject>Probabilistic logic</subject><subject>Sensors</subject><subject>Wireless sensor networks</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKAzEQhoMoWKv3gjd5gdTJcXcvtXgotLTQeilLNoca2W5Ksgj69G5t8er_GOYfhg-hWwoTSqG638wWEwaUTRijopLsDI2olAWplGLnaARAS1IJqS7RVc6fAFAoUYzQ-yrFRjehDbkPBq9dl0O3xYtoXYt9TH-TIVatNm7nuh4v933YhR_dh9jhR52dxQPMQ-dI9GQdth89nsYvl_TWXaMLr9vsbk45Rm_PT5vpK5kvX2bThzkxHGRP9PCYVZZ7sFAyegDDmTEFLbkVoHVjDQBrSukHFI6XrBK20Nw3RjOr-BjB8a5JMefkfL1PYafTd02hPuipBz31QU990jNU7o6V4Jz7X1ecCyE5_wU-PGJt</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Akbarzadeh, V.</creator><creator>Gagne, C.</creator><creator>Parizeau, M.</creator><creator>Argany, M.</creator><creator>Mostafavi, M. A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130201</creationdate><title>Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage</title><author>Akbarzadeh, V. ; Gagne, C. ; Parizeau, M. ; Argany, M. ; Mostafavi, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-a945d6d3f0d0821d3f0c32cc7183d40aabdc002b85fabd4e38294d7a3fbca2d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation models</topic><topic>Digital elevation models</topic><topic>Environmental factors</topic><topic>evolutionary computation</topic><topic>geographic information systems</topic><topic>optimization</topic><topic>Optimization methods</topic><topic>Probabilistic logic</topic><topic>Sensors</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbarzadeh, V.</creatorcontrib><creatorcontrib>Gagne, C.</creatorcontrib><creatorcontrib>Parizeau, M.</creatorcontrib><creatorcontrib>Argany, M.</creatorcontrib><creatorcontrib>Mostafavi, M. A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akbarzadeh, V.</au><au>Gagne, C.</au><au>Parizeau, M.</au><au>Argany, M.</au><au>Mostafavi, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>62</volume><issue>2</issue><spage>293</spage><epage>303</epage><pages>293-303</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This paper proposes a probabilistic sensor model for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviour and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel probabilistic sensing model for sensors with line-of-sight-based coverage (e.g., cameras) to tackle the sensor placement problem for these sensors. The probabilistic sensing model consists of membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, limited-memory Broyden-Fletcher-Goldfarb-Shanno method, and covariance matrix adaptation evolution strategy.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2012.2214952</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2013-02, Vol.62 (2), p.293-303 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2012_2214952 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Digital elevation models Environmental factors evolutionary computation geographic information systems optimization Optimization methods Probabilistic logic Sensors Wireless sensor networks |
title | Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Sensing%20Model%20for%20Sensor%20Placement%20Optimization%20Based%20on%20Line-of-Sight%20Coverage&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Akbarzadeh,%20V.&rft.date=2013-02-01&rft.volume=62&rft.issue=2&rft.spage=293&rft.epage=303&rft.pages=293-303&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2012.2214952&rft_dat=%3Ccrossref_RIE%3E10_1109_TIM_2012_2214952%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6334453&rfr_iscdi=true |