Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage

This paper proposes a probabilistic sensor model for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviour and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2013-02, Vol.62 (2), p.293-303
Hauptverfasser: Akbarzadeh, V., Gagne, C., Parizeau, M., Argany, M., Mostafavi, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue 2
container_start_page 293
container_title IEEE transactions on instrumentation and measurement
container_volume 62
creator Akbarzadeh, V.
Gagne, C.
Parizeau, M.
Argany, M.
Mostafavi, M. A.
description This paper proposes a probabilistic sensor model for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviour and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel probabilistic sensing model for sensors with line-of-sight-based coverage (e.g., cameras) to tackle the sensor placement problem for these sensors. The probabilistic sensing model consists of membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, limited-memory Broyden-Fletcher-Goldfarb-Shanno method, and covariance matrix adaptation evolution strategy.
doi_str_mv 10.1109/TIM.2012.2214952
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2012_2214952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6334453</ieee_id><sourcerecordid>10_1109_TIM_2012_2214952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-a945d6d3f0d0821d3f0c32cc7183d40aabdc002b85fabd4e38294d7a3fbca2d63</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWKv3gjd5gdTJcXcvtXgotLTQeilLNoca2W5Ksgj69G5t8er_GOYfhg-hWwoTSqG638wWEwaUTRijopLsDI2olAWplGLnaARAS1IJqS7RVc6fAFAoUYzQ-yrFRjehDbkPBq9dl0O3xYtoXYt9TH-TIVatNm7nuh4v933YhR_dh9jhR52dxQPMQ-dI9GQdth89nsYvl_TWXaMLr9vsbk45Rm_PT5vpK5kvX2bThzkxHGRP9PCYVZZ7sFAyegDDmTEFLbkVoHVjDQBrSukHFI6XrBK20Nw3RjOr-BjB8a5JMefkfL1PYafTd02hPuipBz31QU990jNU7o6V4Jz7X1ecCyE5_wU-PGJt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage</title><source>IEEE Electronic Library (IEL)</source><creator>Akbarzadeh, V. ; Gagne, C. ; Parizeau, M. ; Argany, M. ; Mostafavi, M. A.</creator><creatorcontrib>Akbarzadeh, V. ; Gagne, C. ; Parizeau, M. ; Argany, M. ; Mostafavi, M. A.</creatorcontrib><description>This paper proposes a probabilistic sensor model for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviour and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel probabilistic sensing model for sensors with line-of-sight-based coverage (e.g., cameras) to tackle the sensor placement problem for these sensors. The probabilistic sensing model consists of membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, limited-memory Broyden-Fletcher-Goldfarb-Shanno method, and covariance matrix adaptation evolution strategy.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2012.2214952</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Digital elevation models ; Environmental factors ; evolutionary computation ; geographic information systems ; optimization ; Optimization methods ; Probabilistic logic ; Sensors ; Wireless sensor networks</subject><ispartof>IEEE transactions on instrumentation and measurement, 2013-02, Vol.62 (2), p.293-303</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-a945d6d3f0d0821d3f0c32cc7183d40aabdc002b85fabd4e38294d7a3fbca2d63</citedby><cites>FETCH-LOGICAL-c305t-a945d6d3f0d0821d3f0c32cc7183d40aabdc002b85fabd4e38294d7a3fbca2d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6334453$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6334453$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akbarzadeh, V.</creatorcontrib><creatorcontrib>Gagne, C.</creatorcontrib><creatorcontrib>Parizeau, M.</creatorcontrib><creatorcontrib>Argany, M.</creatorcontrib><creatorcontrib>Mostafavi, M. A.</creatorcontrib><title>Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This paper proposes a probabilistic sensor model for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviour and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel probabilistic sensing model for sensors with line-of-sight-based coverage (e.g., cameras) to tackle the sensor placement problem for these sensors. The probabilistic sensing model consists of membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, limited-memory Broyden-Fletcher-Goldfarb-Shanno method, and covariance matrix adaptation evolution strategy.</description><subject>Adaptation models</subject><subject>Digital elevation models</subject><subject>Environmental factors</subject><subject>evolutionary computation</subject><subject>geographic information systems</subject><subject>optimization</subject><subject>Optimization methods</subject><subject>Probabilistic logic</subject><subject>Sensors</subject><subject>Wireless sensor networks</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKAzEQhoMoWKv3gjd5gdTJcXcvtXgotLTQeilLNoca2W5Ksgj69G5t8er_GOYfhg-hWwoTSqG638wWEwaUTRijopLsDI2olAWplGLnaARAS1IJqS7RVc6fAFAoUYzQ-yrFRjehDbkPBq9dl0O3xYtoXYt9TH-TIVatNm7nuh4v933YhR_dh9jhR52dxQPMQ-dI9GQdth89nsYvl_TWXaMLr9vsbk45Rm_PT5vpK5kvX2bThzkxHGRP9PCYVZZ7sFAyegDDmTEFLbkVoHVjDQBrSukHFI6XrBK20Nw3RjOr-BjB8a5JMefkfL1PYafTd02hPuipBz31QU990jNU7o6V4Jz7X1ecCyE5_wU-PGJt</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Akbarzadeh, V.</creator><creator>Gagne, C.</creator><creator>Parizeau, M.</creator><creator>Argany, M.</creator><creator>Mostafavi, M. A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130201</creationdate><title>Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage</title><author>Akbarzadeh, V. ; Gagne, C. ; Parizeau, M. ; Argany, M. ; Mostafavi, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-a945d6d3f0d0821d3f0c32cc7183d40aabdc002b85fabd4e38294d7a3fbca2d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation models</topic><topic>Digital elevation models</topic><topic>Environmental factors</topic><topic>evolutionary computation</topic><topic>geographic information systems</topic><topic>optimization</topic><topic>Optimization methods</topic><topic>Probabilistic logic</topic><topic>Sensors</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbarzadeh, V.</creatorcontrib><creatorcontrib>Gagne, C.</creatorcontrib><creatorcontrib>Parizeau, M.</creatorcontrib><creatorcontrib>Argany, M.</creatorcontrib><creatorcontrib>Mostafavi, M. A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akbarzadeh, V.</au><au>Gagne, C.</au><au>Parizeau, M.</au><au>Argany, M.</au><au>Mostafavi, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>62</volume><issue>2</issue><spage>293</spage><epage>303</epage><pages>293-303</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This paper proposes a probabilistic sensor model for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviour and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel probabilistic sensing model for sensors with line-of-sight-based coverage (e.g., cameras) to tackle the sensor placement problem for these sensors. The probabilistic sensing model consists of membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, limited-memory Broyden-Fletcher-Goldfarb-Shanno method, and covariance matrix adaptation evolution strategy.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2012.2214952</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2013-02, Vol.62 (2), p.293-303
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2012_2214952
source IEEE Electronic Library (IEL)
subjects Adaptation models
Digital elevation models
Environmental factors
evolutionary computation
geographic information systems
optimization
Optimization methods
Probabilistic logic
Sensors
Wireless sensor networks
title Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Sensing%20Model%20for%20Sensor%20Placement%20Optimization%20Based%20on%20Line-of-Sight%20Coverage&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Akbarzadeh,%20V.&rft.date=2013-02-01&rft.volume=62&rft.issue=2&rft.spage=293&rft.epage=303&rft.pages=293-303&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2012.2214952&rft_dat=%3Ccrossref_RIE%3E10_1109_TIM_2012_2214952%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6334453&rfr_iscdi=true