Signal Processing for Laser-Speckle Strain-Measurement Techniques

Contactless and nondestructive material testing is of increasing interest in modern material sciences, where the measurement of the material properties of fibers and foils has become important in the development of new materials like composites, fiber bundles, or fiber-reinforced ceramics. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2007-12, Vol.56 (6), p.2681-2687
Hauptverfasser: Schneider, S.C., Rupitsch, S.J., Zagar, B.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2687
container_issue 6
container_start_page 2681
container_title IEEE transactions on instrumentation and measurement
container_volume 56
creator Schneider, S.C.
Rupitsch, S.J.
Zagar, B.G.
description Contactless and nondestructive material testing is of increasing interest in modern material sciences, where the measurement of the material properties of fibers and foils has become important in the development of new materials like composites, fiber bundles, or fiber-reinforced ceramics. However, strain measurement methods making use of laser speckle shifts induced by translation and deformation of the specimen turned out to be very useful when measuring stress-strain relations or thermal expansions of specimens to which strain gauges are not applicable, either due to the geometric dimensions of the specimen or for environmental conditions, e.g., high temperatures. Using laser-optical methods, one is confronted with the problem of calculating the speckle-pattern-shift values from a time series of images in the presence of the speckle decorrelation effects. In this paper, we give an overview of the most common methods and present a novel algorithm based on the maximum-likelihood principle, which yields sufficient accuracy for the common measurement tasks. Moreover, we show the application of two different optical strain-measurement setups used to measure mechanical and thermal strain.
doi_str_mv 10.1109/TIM.2007.908251
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2007_908251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4389142</ieee_id><sourcerecordid>875039867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-b694438b2221bdcb1bba32430cecd85654e64cfaf37375c2487de4c93f2bea7d3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqUwM7BELExp_X6MVcWjUiuQWmbLcW5KSpoUuxn497gKYmC6y3fO1fkQuiV4Qgg2081iNaEYq4nBmgpyhkZECJUbKek5GmFMdG64kJfoKsYdTqDkaoRm63rbuiZ7C52HGOt2m1VdyJYuQsjXB_CfDWTrY3B1m6_AxT7AHtpjtgH_0dZfPcRrdFG5JsLN7x2j96fHzfwlX74-L-azZe4Zxce8kIZzpgtKKSlKX5CicIxyhj34UgspOEjuK1cxxZTwlGtVAveGVbQAp0o2Rg9D7yF0p79Hu6-jh6ZxLXR9tFoJzIyWKpH3_8hd14e0MkGSKS2F5gmaDpAPXYwBKnsI9d6Fb0uwPQm1Sag9CbWD0JS4GxI1APzRaZMhnLIfjHBxEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863786584</pqid></control><display><type>article</type><title>Signal Processing for Laser-Speckle Strain-Measurement Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Schneider, S.C. ; Rupitsch, S.J. ; Zagar, B.G.</creator><creatorcontrib>Schneider, S.C. ; Rupitsch, S.J. ; Zagar, B.G.</creatorcontrib><description>Contactless and nondestructive material testing is of increasing interest in modern material sciences, where the measurement of the material properties of fibers and foils has become important in the development of new materials like composites, fiber bundles, or fiber-reinforced ceramics. However, strain measurement methods making use of laser speckle shifts induced by translation and deformation of the specimen turned out to be very useful when measuring stress-strain relations or thermal expansions of specimens to which strain gauges are not applicable, either due to the geometric dimensions of the specimen or for environmental conditions, e.g., high temperatures. Using laser-optical methods, one is confronted with the problem of calculating the speckle-pattern-shift values from a time series of images in the presence of the speckle decorrelation effects. In this paper, we give an overview of the most common methods and present a novel algorithm based on the maximum-likelihood principle, which yields sufficient accuracy for the common measurement tasks. Moreover, we show the application of two different optical strain-measurement setups used to measure mechanical and thermal strain.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2007.908251</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bundles ; Composite materials ; Displacement estimation ; elastic modulus ; Fiber lasers ; Fibers ; Foils ; Instrumentation ; Laser modes ; laser speckles ; Laser theory ; Materials testing ; maximum likelihood (ML) ; Measurement techniques ; Optical fiber testing ; Optical materials ; Signal processing ; Speckle ; Strain gauges ; Strain measurement ; Stress-strain relationships ; Studies ; Thermal expansion ; thermal-strain measurement</subject><ispartof>IEEE transactions on instrumentation and measurement, 2007-12, Vol.56 (6), p.2681-2687</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-b694438b2221bdcb1bba32430cecd85654e64cfaf37375c2487de4c93f2bea7d3</citedby><cites>FETCH-LOGICAL-c320t-b694438b2221bdcb1bba32430cecd85654e64cfaf37375c2487de4c93f2bea7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4389142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4389142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schneider, S.C.</creatorcontrib><creatorcontrib>Rupitsch, S.J.</creatorcontrib><creatorcontrib>Zagar, B.G.</creatorcontrib><title>Signal Processing for Laser-Speckle Strain-Measurement Techniques</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Contactless and nondestructive material testing is of increasing interest in modern material sciences, where the measurement of the material properties of fibers and foils has become important in the development of new materials like composites, fiber bundles, or fiber-reinforced ceramics. However, strain measurement methods making use of laser speckle shifts induced by translation and deformation of the specimen turned out to be very useful when measuring stress-strain relations or thermal expansions of specimens to which strain gauges are not applicable, either due to the geometric dimensions of the specimen or for environmental conditions, e.g., high temperatures. Using laser-optical methods, one is confronted with the problem of calculating the speckle-pattern-shift values from a time series of images in the presence of the speckle decorrelation effects. In this paper, we give an overview of the most common methods and present a novel algorithm based on the maximum-likelihood principle, which yields sufficient accuracy for the common measurement tasks. Moreover, we show the application of two different optical strain-measurement setups used to measure mechanical and thermal strain.</description><subject>Algorithms</subject><subject>Bundles</subject><subject>Composite materials</subject><subject>Displacement estimation</subject><subject>elastic modulus</subject><subject>Fiber lasers</subject><subject>Fibers</subject><subject>Foils</subject><subject>Instrumentation</subject><subject>Laser modes</subject><subject>laser speckles</subject><subject>Laser theory</subject><subject>Materials testing</subject><subject>maximum likelihood (ML)</subject><subject>Measurement techniques</subject><subject>Optical fiber testing</subject><subject>Optical materials</subject><subject>Signal processing</subject><subject>Speckle</subject><subject>Strain gauges</subject><subject>Strain measurement</subject><subject>Stress-strain relationships</subject><subject>Studies</subject><subject>Thermal expansion</subject><subject>thermal-strain measurement</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDtPwzAUhS0EEqUwM7BELExp_X6MVcWjUiuQWmbLcW5KSpoUuxn497gKYmC6y3fO1fkQuiV4Qgg2081iNaEYq4nBmgpyhkZECJUbKek5GmFMdG64kJfoKsYdTqDkaoRm63rbuiZ7C52HGOt2m1VdyJYuQsjXB_CfDWTrY3B1m6_AxT7AHtpjtgH_0dZfPcRrdFG5JsLN7x2j96fHzfwlX74-L-azZe4Zxce8kIZzpgtKKSlKX5CicIxyhj34UgspOEjuK1cxxZTwlGtVAveGVbQAp0o2Rg9D7yF0p79Hu6-jh6ZxLXR9tFoJzIyWKpH3_8hd14e0MkGSKS2F5gmaDpAPXYwBKnsI9d6Fb0uwPQm1Sag9CbWD0JS4GxI1APzRaZMhnLIfjHBxEA</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Schneider, S.C.</creator><creator>Rupitsch, S.J.</creator><creator>Zagar, B.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope></search><sort><creationdate>20071201</creationdate><title>Signal Processing for Laser-Speckle Strain-Measurement Techniques</title><author>Schneider, S.C. ; Rupitsch, S.J. ; Zagar, B.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-b694438b2221bdcb1bba32430cecd85654e64cfaf37375c2487de4c93f2bea7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Bundles</topic><topic>Composite materials</topic><topic>Displacement estimation</topic><topic>elastic modulus</topic><topic>Fiber lasers</topic><topic>Fibers</topic><topic>Foils</topic><topic>Instrumentation</topic><topic>Laser modes</topic><topic>laser speckles</topic><topic>Laser theory</topic><topic>Materials testing</topic><topic>maximum likelihood (ML)</topic><topic>Measurement techniques</topic><topic>Optical fiber testing</topic><topic>Optical materials</topic><topic>Signal processing</topic><topic>Speckle</topic><topic>Strain gauges</topic><topic>Strain measurement</topic><topic>Stress-strain relationships</topic><topic>Studies</topic><topic>Thermal expansion</topic><topic>thermal-strain measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, S.C.</creatorcontrib><creatorcontrib>Rupitsch, S.J.</creatorcontrib><creatorcontrib>Zagar, B.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schneider, S.C.</au><au>Rupitsch, S.J.</au><au>Zagar, B.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signal Processing for Laser-Speckle Strain-Measurement Techniques</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>56</volume><issue>6</issue><spage>2681</spage><epage>2687</epage><pages>2681-2687</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Contactless and nondestructive material testing is of increasing interest in modern material sciences, where the measurement of the material properties of fibers and foils has become important in the development of new materials like composites, fiber bundles, or fiber-reinforced ceramics. However, strain measurement methods making use of laser speckle shifts induced by translation and deformation of the specimen turned out to be very useful when measuring stress-strain relations or thermal expansions of specimens to which strain gauges are not applicable, either due to the geometric dimensions of the specimen or for environmental conditions, e.g., high temperatures. Using laser-optical methods, one is confronted with the problem of calculating the speckle-pattern-shift values from a time series of images in the presence of the speckle decorrelation effects. In this paper, we give an overview of the most common methods and present a novel algorithm based on the maximum-likelihood principle, which yields sufficient accuracy for the common measurement tasks. Moreover, we show the application of two different optical strain-measurement setups used to measure mechanical and thermal strain.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2007.908251</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2007-12, Vol.56 (6), p.2681-2687
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2007_908251
source IEEE Electronic Library (IEL)
subjects Algorithms
Bundles
Composite materials
Displacement estimation
elastic modulus
Fiber lasers
Fibers
Foils
Instrumentation
Laser modes
laser speckles
Laser theory
Materials testing
maximum likelihood (ML)
Measurement techniques
Optical fiber testing
Optical materials
Signal processing
Speckle
Strain gauges
Strain measurement
Stress-strain relationships
Studies
Thermal expansion
thermal-strain measurement
title Signal Processing for Laser-Speckle Strain-Measurement Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signal%20Processing%20for%20Laser-Speckle%20Strain-Measurement%20Techniques&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Schneider,%20S.C.&rft.date=2007-12-01&rft.volume=56&rft.issue=6&rft.spage=2681&rft.epage=2687&rft.pages=2681-2687&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2007.908251&rft_dat=%3Cproquest_RIE%3E875039867%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863786584&rft_id=info:pmid/&rft_ieee_id=4389142&rfr_iscdi=true