Signal Processing for Laser-Speckle Strain-Measurement Techniques
Contactless and nondestructive material testing is of increasing interest in modern material sciences, where the measurement of the material properties of fibers and foils has become important in the development of new materials like composites, fiber bundles, or fiber-reinforced ceramics. However,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2007-12, Vol.56 (6), p.2681-2687 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2687 |
---|---|
container_issue | 6 |
container_start_page | 2681 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 56 |
creator | Schneider, S.C. Rupitsch, S.J. Zagar, B.G. |
description | Contactless and nondestructive material testing is of increasing interest in modern material sciences, where the measurement of the material properties of fibers and foils has become important in the development of new materials like composites, fiber bundles, or fiber-reinforced ceramics. However, strain measurement methods making use of laser speckle shifts induced by translation and deformation of the specimen turned out to be very useful when measuring stress-strain relations or thermal expansions of specimens to which strain gauges are not applicable, either due to the geometric dimensions of the specimen or for environmental conditions, e.g., high temperatures. Using laser-optical methods, one is confronted with the problem of calculating the speckle-pattern-shift values from a time series of images in the presence of the speckle decorrelation effects. In this paper, we give an overview of the most common methods and present a novel algorithm based on the maximum-likelihood principle, which yields sufficient accuracy for the common measurement tasks. Moreover, we show the application of two different optical strain-measurement setups used to measure mechanical and thermal strain. |
doi_str_mv | 10.1109/TIM.2007.908251 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2007_908251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4389142</ieee_id><sourcerecordid>875039867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-b694438b2221bdcb1bba32430cecd85654e64cfaf37375c2487de4c93f2bea7d3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqUwM7BELExp_X6MVcWjUiuQWmbLcW5KSpoUuxn497gKYmC6y3fO1fkQuiV4Qgg2081iNaEYq4nBmgpyhkZECJUbKek5GmFMdG64kJfoKsYdTqDkaoRm63rbuiZ7C52HGOt2m1VdyJYuQsjXB_CfDWTrY3B1m6_AxT7AHtpjtgH_0dZfPcRrdFG5JsLN7x2j96fHzfwlX74-L-azZe4Zxce8kIZzpgtKKSlKX5CicIxyhj34UgspOEjuK1cxxZTwlGtVAveGVbQAp0o2Rg9D7yF0p79Hu6-jh6ZxLXR9tFoJzIyWKpH3_8hd14e0MkGSKS2F5gmaDpAPXYwBKnsI9d6Fb0uwPQm1Sag9CbWD0JS4GxI1APzRaZMhnLIfjHBxEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863786584</pqid></control><display><type>article</type><title>Signal Processing for Laser-Speckle Strain-Measurement Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Schneider, S.C. ; Rupitsch, S.J. ; Zagar, B.G.</creator><creatorcontrib>Schneider, S.C. ; Rupitsch, S.J. ; Zagar, B.G.</creatorcontrib><description>Contactless and nondestructive material testing is of increasing interest in modern material sciences, where the measurement of the material properties of fibers and foils has become important in the development of new materials like composites, fiber bundles, or fiber-reinforced ceramics. However, strain measurement methods making use of laser speckle shifts induced by translation and deformation of the specimen turned out to be very useful when measuring stress-strain relations or thermal expansions of specimens to which strain gauges are not applicable, either due to the geometric dimensions of the specimen or for environmental conditions, e.g., high temperatures. Using laser-optical methods, one is confronted with the problem of calculating the speckle-pattern-shift values from a time series of images in the presence of the speckle decorrelation effects. In this paper, we give an overview of the most common methods and present a novel algorithm based on the maximum-likelihood principle, which yields sufficient accuracy for the common measurement tasks. Moreover, we show the application of two different optical strain-measurement setups used to measure mechanical and thermal strain.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2007.908251</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bundles ; Composite materials ; Displacement estimation ; elastic modulus ; Fiber lasers ; Fibers ; Foils ; Instrumentation ; Laser modes ; laser speckles ; Laser theory ; Materials testing ; maximum likelihood (ML) ; Measurement techniques ; Optical fiber testing ; Optical materials ; Signal processing ; Speckle ; Strain gauges ; Strain measurement ; Stress-strain relationships ; Studies ; Thermal expansion ; thermal-strain measurement</subject><ispartof>IEEE transactions on instrumentation and measurement, 2007-12, Vol.56 (6), p.2681-2687</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-b694438b2221bdcb1bba32430cecd85654e64cfaf37375c2487de4c93f2bea7d3</citedby><cites>FETCH-LOGICAL-c320t-b694438b2221bdcb1bba32430cecd85654e64cfaf37375c2487de4c93f2bea7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4389142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4389142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schneider, S.C.</creatorcontrib><creatorcontrib>Rupitsch, S.J.</creatorcontrib><creatorcontrib>Zagar, B.G.</creatorcontrib><title>Signal Processing for Laser-Speckle Strain-Measurement Techniques</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Contactless and nondestructive material testing is of increasing interest in modern material sciences, where the measurement of the material properties of fibers and foils has become important in the development of new materials like composites, fiber bundles, or fiber-reinforced ceramics. However, strain measurement methods making use of laser speckle shifts induced by translation and deformation of the specimen turned out to be very useful when measuring stress-strain relations or thermal expansions of specimens to which strain gauges are not applicable, either due to the geometric dimensions of the specimen or for environmental conditions, e.g., high temperatures. Using laser-optical methods, one is confronted with the problem of calculating the speckle-pattern-shift values from a time series of images in the presence of the speckle decorrelation effects. In this paper, we give an overview of the most common methods and present a novel algorithm based on the maximum-likelihood principle, which yields sufficient accuracy for the common measurement tasks. Moreover, we show the application of two different optical strain-measurement setups used to measure mechanical and thermal strain.</description><subject>Algorithms</subject><subject>Bundles</subject><subject>Composite materials</subject><subject>Displacement estimation</subject><subject>elastic modulus</subject><subject>Fiber lasers</subject><subject>Fibers</subject><subject>Foils</subject><subject>Instrumentation</subject><subject>Laser modes</subject><subject>laser speckles</subject><subject>Laser theory</subject><subject>Materials testing</subject><subject>maximum likelihood (ML)</subject><subject>Measurement techniques</subject><subject>Optical fiber testing</subject><subject>Optical materials</subject><subject>Signal processing</subject><subject>Speckle</subject><subject>Strain gauges</subject><subject>Strain measurement</subject><subject>Stress-strain relationships</subject><subject>Studies</subject><subject>Thermal expansion</subject><subject>thermal-strain measurement</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDtPwzAUhS0EEqUwM7BELExp_X6MVcWjUiuQWmbLcW5KSpoUuxn497gKYmC6y3fO1fkQuiV4Qgg2081iNaEYq4nBmgpyhkZECJUbKek5GmFMdG64kJfoKsYdTqDkaoRm63rbuiZ7C52HGOt2m1VdyJYuQsjXB_CfDWTrY3B1m6_AxT7AHtpjtgH_0dZfPcRrdFG5JsLN7x2j96fHzfwlX74-L-azZe4Zxce8kIZzpgtKKSlKX5CicIxyhj34UgspOEjuK1cxxZTwlGtVAveGVbQAp0o2Rg9D7yF0p79Hu6-jh6ZxLXR9tFoJzIyWKpH3_8hd14e0MkGSKS2F5gmaDpAPXYwBKnsI9d6Fb0uwPQm1Sag9CbWD0JS4GxI1APzRaZMhnLIfjHBxEA</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Schneider, S.C.</creator><creator>Rupitsch, S.J.</creator><creator>Zagar, B.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope></search><sort><creationdate>20071201</creationdate><title>Signal Processing for Laser-Speckle Strain-Measurement Techniques</title><author>Schneider, S.C. ; Rupitsch, S.J. ; Zagar, B.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-b694438b2221bdcb1bba32430cecd85654e64cfaf37375c2487de4c93f2bea7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Bundles</topic><topic>Composite materials</topic><topic>Displacement estimation</topic><topic>elastic modulus</topic><topic>Fiber lasers</topic><topic>Fibers</topic><topic>Foils</topic><topic>Instrumentation</topic><topic>Laser modes</topic><topic>laser speckles</topic><topic>Laser theory</topic><topic>Materials testing</topic><topic>maximum likelihood (ML)</topic><topic>Measurement techniques</topic><topic>Optical fiber testing</topic><topic>Optical materials</topic><topic>Signal processing</topic><topic>Speckle</topic><topic>Strain gauges</topic><topic>Strain measurement</topic><topic>Stress-strain relationships</topic><topic>Studies</topic><topic>Thermal expansion</topic><topic>thermal-strain measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, S.C.</creatorcontrib><creatorcontrib>Rupitsch, S.J.</creatorcontrib><creatorcontrib>Zagar, B.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schneider, S.C.</au><au>Rupitsch, S.J.</au><au>Zagar, B.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signal Processing for Laser-Speckle Strain-Measurement Techniques</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>56</volume><issue>6</issue><spage>2681</spage><epage>2687</epage><pages>2681-2687</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Contactless and nondestructive material testing is of increasing interest in modern material sciences, where the measurement of the material properties of fibers and foils has become important in the development of new materials like composites, fiber bundles, or fiber-reinforced ceramics. However, strain measurement methods making use of laser speckle shifts induced by translation and deformation of the specimen turned out to be very useful when measuring stress-strain relations or thermal expansions of specimens to which strain gauges are not applicable, either due to the geometric dimensions of the specimen or for environmental conditions, e.g., high temperatures. Using laser-optical methods, one is confronted with the problem of calculating the speckle-pattern-shift values from a time series of images in the presence of the speckle decorrelation effects. In this paper, we give an overview of the most common methods and present a novel algorithm based on the maximum-likelihood principle, which yields sufficient accuracy for the common measurement tasks. Moreover, we show the application of two different optical strain-measurement setups used to measure mechanical and thermal strain.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2007.908251</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2007-12, Vol.56 (6), p.2681-2687 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2007_908251 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bundles Composite materials Displacement estimation elastic modulus Fiber lasers Fibers Foils Instrumentation Laser modes laser speckles Laser theory Materials testing maximum likelihood (ML) Measurement techniques Optical fiber testing Optical materials Signal processing Speckle Strain gauges Strain measurement Stress-strain relationships Studies Thermal expansion thermal-strain measurement |
title | Signal Processing for Laser-Speckle Strain-Measurement Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signal%20Processing%20for%20Laser-Speckle%20Strain-Measurement%20Techniques&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Schneider,%20S.C.&rft.date=2007-12-01&rft.volume=56&rft.issue=6&rft.spage=2681&rft.epage=2687&rft.pages=2681-2687&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2007.908251&rft_dat=%3Cproquest_RIE%3E875039867%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863786584&rft_id=info:pmid/&rft_ieee_id=4389142&rfr_iscdi=true |