Evidential mapping for mobile robots with range sensors

Mapping for mobile robots integrates noisy spurious sensor data into a single coherent map useful for navigational purposes. There are various frameworks used for mapping, but the Bayesian framework appears to be most popular. In this paper, the theory behind the Bayesian framework as it is used in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2006-08, Vol.55 (4), p.1422-1429
Hauptverfasser: Tun Yang, Aitken, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1429
container_issue 4
container_start_page 1422
container_title IEEE transactions on instrumentation and measurement
container_volume 55
creator Tun Yang
Aitken, V.
description Mapping for mobile robots integrates noisy spurious sensor data into a single coherent map useful for navigational purposes. There are various frameworks used for mapping, but the Bayesian framework appears to be most popular. In this paper, the theory behind the Bayesian framework as it is used in mapping is briefly compared to a framework based on evidential theory. The remainder of this paper evaluates the use of the evidential framework by simulating its use on a mobile robot with sparse range sensors. A sensor model is described for the range sensors to work with evidential mapping, and the framework was evaluated under varying parameters and in different simulated test environments
doi_str_mv 10.1109/TIM.2006.876399
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2006_876399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1658400</ieee_id><sourcerecordid>2340321451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-5459c4691e93050eacac9dc12f1a8b9180c33afc7f92fd42f8ff54bf58fcc30e3</originalsourceid><addsrcrecordid>eNpdkMFLwzAchYMoOKdnD16KF0_dfkmaNDnK2HQw8TLPIc2SmdE2NekU_3s7Kgie3uV7j8eH0C2GGcYg59v1y4wA8JkoOZXyDE0wY2UuOSfnaAKARS4Lxi_RVUoHACh5UU5Qufz0O9v2XtdZo7vOt_vMhZg1ofK1zWKoQp-yL9-_Z1G3e5sl26YQ0zW6cLpO9uY3p-httdwunvPN69N68bjJDSXQ56xg0hRcYispMLDaaCN3BhOHtagkFmAo1c6UThK3K4gTzrGickw4YyhYOkUP424Xw8fRpl41Phlb17q14ZiUEJIKIiUfyPt_5CEcYzucU4KzwQWhJ2g-QiaGlKJ1qou-0fFbYVAnjWrQqE4a1ahxaNyNDW-t_aM5EwUA_QHTgW3S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865155236</pqid></control><display><type>article</type><title>Evidential mapping for mobile robots with range sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Tun Yang ; Aitken, V.</creator><creatorcontrib>Tun Yang ; Aitken, V.</creatorcontrib><description>Mapping for mobile robots integrates noisy spurious sensor data into a single coherent map useful for navigational purposes. There are various frameworks used for mapping, but the Bayesian framework appears to be most popular. In this paper, the theory behind the Bayesian framework as it is used in mapping is briefly compared to a framework based on evidential theory. The remainder of this paper evaluates the use of the evidential framework by simulating its use on a mobile robot with sparse range sensors. A sensor model is described for the range sensors to work with evidential mapping, and the framework was evaluated under varying parameters and in different simulated test environments</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2006.876399</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayesian analysis ; Bayesian methods ; Coherence ; Computational modeling ; Computer simulation ; Fault-tolerant I&amp;M systems ; Humanoid robots ; Instrumentation ; Intelligent sensors ; Mapping ; Mathematical models ; Mobile robots ; Navigation ; Robot sensing systems ; Robotics and automation ; Robots ; Sensor fusion ; Sensor phenomena and characterization ; Sensors ; soft computing for intelligent I&amp;M systems</subject><ispartof>IEEE transactions on instrumentation and measurement, 2006-08, Vol.55 (4), p.1422-1429</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-5459c4691e93050eacac9dc12f1a8b9180c33afc7f92fd42f8ff54bf58fcc30e3</citedby><cites>FETCH-LOGICAL-c320t-5459c4691e93050eacac9dc12f1a8b9180c33afc7f92fd42f8ff54bf58fcc30e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1658400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1658400$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tun Yang</creatorcontrib><creatorcontrib>Aitken, V.</creatorcontrib><title>Evidential mapping for mobile robots with range sensors</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Mapping for mobile robots integrates noisy spurious sensor data into a single coherent map useful for navigational purposes. There are various frameworks used for mapping, but the Bayesian framework appears to be most popular. In this paper, the theory behind the Bayesian framework as it is used in mapping is briefly compared to a framework based on evidential theory. The remainder of this paper evaluates the use of the evidential framework by simulating its use on a mobile robot with sparse range sensors. A sensor model is described for the range sensors to work with evidential mapping, and the framework was evaluated under varying parameters and in different simulated test environments</description><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Coherence</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Fault-tolerant I&amp;M systems</subject><subject>Humanoid robots</subject><subject>Instrumentation</subject><subject>Intelligent sensors</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Mobile robots</subject><subject>Navigation</subject><subject>Robot sensing systems</subject><subject>Robotics and automation</subject><subject>Robots</subject><subject>Sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>soft computing for intelligent I&amp;M systems</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFLwzAchYMoOKdnD16KF0_dfkmaNDnK2HQw8TLPIc2SmdE2NekU_3s7Kgie3uV7j8eH0C2GGcYg59v1y4wA8JkoOZXyDE0wY2UuOSfnaAKARS4Lxi_RVUoHACh5UU5Qufz0O9v2XtdZo7vOt_vMhZg1ofK1zWKoQp-yL9-_Z1G3e5sl26YQ0zW6cLpO9uY3p-httdwunvPN69N68bjJDSXQ56xg0hRcYispMLDaaCN3BhOHtagkFmAo1c6UThK3K4gTzrGickw4YyhYOkUP424Xw8fRpl41Phlb17q14ZiUEJIKIiUfyPt_5CEcYzucU4KzwQWhJ2g-QiaGlKJ1qou-0fFbYVAnjWrQqE4a1ahxaNyNDW-t_aM5EwUA_QHTgW3S</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Tun Yang</creator><creator>Aitken, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060801</creationdate><title>Evidential mapping for mobile robots with range sensors</title><author>Tun Yang ; Aitken, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-5459c4691e93050eacac9dc12f1a8b9180c33afc7f92fd42f8ff54bf58fcc30e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Coherence</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Fault-tolerant I&amp;M systems</topic><topic>Humanoid robots</topic><topic>Instrumentation</topic><topic>Intelligent sensors</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Mobile robots</topic><topic>Navigation</topic><topic>Robot sensing systems</topic><topic>Robotics and automation</topic><topic>Robots</topic><topic>Sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>soft computing for intelligent I&amp;M systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tun Yang</creatorcontrib><creatorcontrib>Aitken, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tun Yang</au><au>Aitken, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidential mapping for mobile robots with range sensors</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2006-08-01</date><risdate>2006</risdate><volume>55</volume><issue>4</issue><spage>1422</spage><epage>1429</epage><pages>1422-1429</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Mapping for mobile robots integrates noisy spurious sensor data into a single coherent map useful for navigational purposes. There are various frameworks used for mapping, but the Bayesian framework appears to be most popular. In this paper, the theory behind the Bayesian framework as it is used in mapping is briefly compared to a framework based on evidential theory. The remainder of this paper evaluates the use of the evidential framework by simulating its use on a mobile robot with sparse range sensors. A sensor model is described for the range sensors to work with evidential mapping, and the framework was evaluated under varying parameters and in different simulated test environments</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2006.876399</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2006-08, Vol.55 (4), p.1422-1429
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2006_876399
source IEEE Electronic Library (IEL)
subjects Bayesian analysis
Bayesian methods
Coherence
Computational modeling
Computer simulation
Fault-tolerant I&M systems
Humanoid robots
Instrumentation
Intelligent sensors
Mapping
Mathematical models
Mobile robots
Navigation
Robot sensing systems
Robotics and automation
Robots
Sensor fusion
Sensor phenomena and characterization
Sensors
soft computing for intelligent I&M systems
title Evidential mapping for mobile robots with range sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidential%20mapping%20for%20mobile%20robots%20with%20range%20sensors&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Tun%20Yang&rft.date=2006-08-01&rft.volume=55&rft.issue=4&rft.spage=1422&rft.epage=1429&rft.pages=1422-1429&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2006.876399&rft_dat=%3Cproquest_RIE%3E2340321451%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865155236&rft_id=info:pmid/&rft_ieee_id=1658400&rfr_iscdi=true