Detection and Classification of Anomalies in Power Distribution System Using Outlier Filtered Weighted Least Square
This work presents a new algorithm for detecting and classifying data anomalies in operational measurements using statistical, clustering, and outlier-based approaches. Base detectors explored in this work includes density-based spatial clustering of applications with noise, K-Means, local outlier f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2024-05, Vol.20 (5), p.7513-7523 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7523 |
---|---|
container_issue | 5 |
container_start_page | 7513 |
container_title | IEEE transactions on industrial informatics |
container_volume | 20 |
creator | Gholami, Amir Tiwari, Ashutosh Qin, Chuan Pannala, Sanjeev Srivastava, Anurag K. Sharma, Roshan Pandey, Shikhar Rahmatian, Farnoosh |
description | This work presents a new algorithm for detecting and classifying data anomalies in operational measurements using statistical, clustering, and outlier-based approaches. Base detectors explored in this work includes density-based spatial clustering of applications with noise, K-Means, local outlier factor, feature bagging, and robust random cut forests using real distribution system datasets. An ensemble approach is proposed to achieve high detection accuracy and precision compared with any of the base detector and with less dependency on hyperparameter tuning. Also, developed ensemble architecture can integrate additional base detectors. In addition, a simplistic anomaly classification approach is developed, utilizing the clustering concept, while considering the physics of the power distribution systems. The developed schemes are rigorously tested and validated using data from multiple distribution phasor measurement unit devices in the Bronzeville community microgrid, with a diverse set of events and distributed energy resources at dispersed locations. Performance analysis using three test cases are provided to showcase superiority of the proposed approaches. |
doi_str_mv | 10.1109/TII.2024.3360523 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2024_3360523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10438880</ieee_id><sourcerecordid>3052200641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-a8bf6a102a658a649560f187120619fd8d02b34749e64d4e7905952b7f478eb53</originalsourceid><addsrcrecordid>eNpNkE1rwkAQhkNpodb23kMPCz3Hzn4l2aNobQXBgkqPyyaZ2BVNdHdD8d83fhx6mpfheWfgiaJnCgNKQb0tp9MBAyYGnCcgGb-JelQJGgNIuO2ylDTmDPh99OD9BoCnwFUv8mMMWATb1MTUJRltjfe2soU5r5qKDOtmZ7YWPbE1-Wp-0ZGx9cHZvD0ji6MPuCMrb-s1mbehQx2Z2G1AhyX5Rrv-CV2YofGBLA6tcfgY3VVm6_HpOvvRavK-HH3Gs_nHdDScxQVTLMQmy6vEUGAmkZlJhJIJVDRLKYOEqqrMSmA5F6lQmIhSYKpAKsnytBJphrnk_ej1cnfvmkOLPuhN07q6e6l5p4gBJIJ2FFyowjXeO6z03tmdcUdNQZ_U6k6tPqnVV7Vd5eVSsYj4Dxc8yzLgf_5UdNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052200641</pqid></control><display><type>article</type><title>Detection and Classification of Anomalies in Power Distribution System Using Outlier Filtered Weighted Least Square</title><source>IEEE Electronic Library (IEL)</source><creator>Gholami, Amir ; Tiwari, Ashutosh ; Qin, Chuan ; Pannala, Sanjeev ; Srivastava, Anurag K. ; Sharma, Roshan ; Pandey, Shikhar ; Rahmatian, Farnoosh</creator><creatorcontrib>Gholami, Amir ; Tiwari, Ashutosh ; Qin, Chuan ; Pannala, Sanjeev ; Srivastava, Anurag K. ; Sharma, Roshan ; Pandey, Shikhar ; Rahmatian, Farnoosh</creatorcontrib><description>This work presents a new algorithm for detecting and classifying data anomalies in operational measurements using statistical, clustering, and outlier-based approaches. Base detectors explored in this work includes density-based spatial clustering of applications with noise, K-Means, local outlier factor, feature bagging, and robust random cut forests using real distribution system datasets. An ensemble approach is proposed to achieve high detection accuracy and precision compared with any of the base detector and with less dependency on hyperparameter tuning. Also, developed ensemble architecture can integrate additional base detectors. In addition, a simplistic anomaly classification approach is developed, utilizing the clustering concept, while considering the physics of the power distribution systems. The developed schemes are rigorously tested and validated using data from multiple distribution phasor measurement unit devices in the Bronzeville community microgrid, with a diverse set of events and distributed energy resources at dispersed locations. Performance analysis using three test cases are provided to showcase superiority of the proposed approaches.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3360523</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Anomalies ; Anomaly classification ; Anomaly detection ; Bagging ; Classification ; Clustering ; Data analysis ; Detectors ; Distributed generation ; distribution systems ; Elbow ; Electric power distribution ; Energy sources ; event detection ; Informatics ; Measuring instruments ; Outliers (statistics) ; Phasor measurement units ; phasor measurement units (PMUs) ; Phasors ; State estimation</subject><ispartof>IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7513-7523</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-a8bf6a102a658a649560f187120619fd8d02b34749e64d4e7905952b7f478eb53</citedby><cites>FETCH-LOGICAL-c292t-a8bf6a102a658a649560f187120619fd8d02b34749e64d4e7905952b7f478eb53</cites><orcidid>0000-0003-3760-9955 ; 0000-0001-7804-3690 ; 0000-0003-1134-5656 ; 0000-0003-3518-8018 ; 0000-0002-3839-5904 ; 0009-0002-2540-5875 ; 0000-0002-3729-2495 ; 0009-0002-5618-0584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10438880$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10438880$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gholami, Amir</creatorcontrib><creatorcontrib>Tiwari, Ashutosh</creatorcontrib><creatorcontrib>Qin, Chuan</creatorcontrib><creatorcontrib>Pannala, Sanjeev</creatorcontrib><creatorcontrib>Srivastava, Anurag K.</creatorcontrib><creatorcontrib>Sharma, Roshan</creatorcontrib><creatorcontrib>Pandey, Shikhar</creatorcontrib><creatorcontrib>Rahmatian, Farnoosh</creatorcontrib><title>Detection and Classification of Anomalies in Power Distribution System Using Outlier Filtered Weighted Least Square</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>This work presents a new algorithm for detecting and classifying data anomalies in operational measurements using statistical, clustering, and outlier-based approaches. Base detectors explored in this work includes density-based spatial clustering of applications with noise, K-Means, local outlier factor, feature bagging, and robust random cut forests using real distribution system datasets. An ensemble approach is proposed to achieve high detection accuracy and precision compared with any of the base detector and with less dependency on hyperparameter tuning. Also, developed ensemble architecture can integrate additional base detectors. In addition, a simplistic anomaly classification approach is developed, utilizing the clustering concept, while considering the physics of the power distribution systems. The developed schemes are rigorously tested and validated using data from multiple distribution phasor measurement unit devices in the Bronzeville community microgrid, with a diverse set of events and distributed energy resources at dispersed locations. Performance analysis using three test cases are provided to showcase superiority of the proposed approaches.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly classification</subject><subject>Anomaly detection</subject><subject>Bagging</subject><subject>Classification</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Detectors</subject><subject>Distributed generation</subject><subject>distribution systems</subject><subject>Elbow</subject><subject>Electric power distribution</subject><subject>Energy sources</subject><subject>event detection</subject><subject>Informatics</subject><subject>Measuring instruments</subject><subject>Outliers (statistics)</subject><subject>Phasor measurement units</subject><subject>phasor measurement units (PMUs)</subject><subject>Phasors</subject><subject>State estimation</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rwkAQhkNpodb23kMPCz3Hzn4l2aNobQXBgkqPyyaZ2BVNdHdD8d83fhx6mpfheWfgiaJnCgNKQb0tp9MBAyYGnCcgGb-JelQJGgNIuO2ylDTmDPh99OD9BoCnwFUv8mMMWATb1MTUJRltjfe2soU5r5qKDOtmZ7YWPbE1-Wp-0ZGx9cHZvD0ji6MPuCMrb-s1mbehQx2Z2G1AhyX5Rrv-CV2YofGBLA6tcfgY3VVm6_HpOvvRavK-HH3Gs_nHdDScxQVTLMQmy6vEUGAmkZlJhJIJVDRLKYOEqqrMSmA5F6lQmIhSYKpAKsnytBJphrnk_ej1cnfvmkOLPuhN07q6e6l5p4gBJIJ2FFyowjXeO6z03tmdcUdNQZ_U6k6tPqnVV7Vd5eVSsYj4Dxc8yzLgf_5UdNM</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Gholami, Amir</creator><creator>Tiwari, Ashutosh</creator><creator>Qin, Chuan</creator><creator>Pannala, Sanjeev</creator><creator>Srivastava, Anurag K.</creator><creator>Sharma, Roshan</creator><creator>Pandey, Shikhar</creator><creator>Rahmatian, Farnoosh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3760-9955</orcidid><orcidid>https://orcid.org/0000-0001-7804-3690</orcidid><orcidid>https://orcid.org/0000-0003-1134-5656</orcidid><orcidid>https://orcid.org/0000-0003-3518-8018</orcidid><orcidid>https://orcid.org/0000-0002-3839-5904</orcidid><orcidid>https://orcid.org/0009-0002-2540-5875</orcidid><orcidid>https://orcid.org/0000-0002-3729-2495</orcidid><orcidid>https://orcid.org/0009-0002-5618-0584</orcidid></search><sort><creationdate>20240501</creationdate><title>Detection and Classification of Anomalies in Power Distribution System Using Outlier Filtered Weighted Least Square</title><author>Gholami, Amir ; Tiwari, Ashutosh ; Qin, Chuan ; Pannala, Sanjeev ; Srivastava, Anurag K. ; Sharma, Roshan ; Pandey, Shikhar ; Rahmatian, Farnoosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-a8bf6a102a658a649560f187120619fd8d02b34749e64d4e7905952b7f478eb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly classification</topic><topic>Anomaly detection</topic><topic>Bagging</topic><topic>Classification</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Detectors</topic><topic>Distributed generation</topic><topic>distribution systems</topic><topic>Elbow</topic><topic>Electric power distribution</topic><topic>Energy sources</topic><topic>event detection</topic><topic>Informatics</topic><topic>Measuring instruments</topic><topic>Outliers (statistics)</topic><topic>Phasor measurement units</topic><topic>phasor measurement units (PMUs)</topic><topic>Phasors</topic><topic>State estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Gholami, Amir</creatorcontrib><creatorcontrib>Tiwari, Ashutosh</creatorcontrib><creatorcontrib>Qin, Chuan</creatorcontrib><creatorcontrib>Pannala, Sanjeev</creatorcontrib><creatorcontrib>Srivastava, Anurag K.</creatorcontrib><creatorcontrib>Sharma, Roshan</creatorcontrib><creatorcontrib>Pandey, Shikhar</creatorcontrib><creatorcontrib>Rahmatian, Farnoosh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gholami, Amir</au><au>Tiwari, Ashutosh</au><au>Qin, Chuan</au><au>Pannala, Sanjeev</au><au>Srivastava, Anurag K.</au><au>Sharma, Roshan</au><au>Pandey, Shikhar</au><au>Rahmatian, Farnoosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Classification of Anomalies in Power Distribution System Using Outlier Filtered Weighted Least Square</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>7513</spage><epage>7523</epage><pages>7513-7523</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>This work presents a new algorithm for detecting and classifying data anomalies in operational measurements using statistical, clustering, and outlier-based approaches. Base detectors explored in this work includes density-based spatial clustering of applications with noise, K-Means, local outlier factor, feature bagging, and robust random cut forests using real distribution system datasets. An ensemble approach is proposed to achieve high detection accuracy and precision compared with any of the base detector and with less dependency on hyperparameter tuning. Also, developed ensemble architecture can integrate additional base detectors. In addition, a simplistic anomaly classification approach is developed, utilizing the clustering concept, while considering the physics of the power distribution systems. The developed schemes are rigorously tested and validated using data from multiple distribution phasor measurement unit devices in the Bronzeville community microgrid, with a diverse set of events and distributed energy resources at dispersed locations. Performance analysis using three test cases are provided to showcase superiority of the proposed approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3360523</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3760-9955</orcidid><orcidid>https://orcid.org/0000-0001-7804-3690</orcidid><orcidid>https://orcid.org/0000-0003-1134-5656</orcidid><orcidid>https://orcid.org/0000-0003-3518-8018</orcidid><orcidid>https://orcid.org/0000-0002-3839-5904</orcidid><orcidid>https://orcid.org/0009-0002-2540-5875</orcidid><orcidid>https://orcid.org/0000-0002-3729-2495</orcidid><orcidid>https://orcid.org/0009-0002-5618-0584</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7513-7523 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2024_3360523 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Anomalies Anomaly classification Anomaly detection Bagging Classification Clustering Data analysis Detectors Distributed generation distribution systems Elbow Electric power distribution Energy sources event detection Informatics Measuring instruments Outliers (statistics) Phasor measurement units phasor measurement units (PMUs) Phasors State estimation |
title | Detection and Classification of Anomalies in Power Distribution System Using Outlier Filtered Weighted Least Square |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Classification%20of%20Anomalies%20in%20Power%20Distribution%20System%20Using%20Outlier%20Filtered%20Weighted%20Least%20Square&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Gholami,%20Amir&rft.date=2024-05-01&rft.volume=20&rft.issue=5&rft.spage=7513&rft.epage=7523&rft.pages=7513-7523&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3360523&rft_dat=%3Cproquest_RIE%3E3052200641%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052200641&rft_id=info:pmid/&rft_ieee_id=10438880&rfr_iscdi=true |