Detection and Classification of Anomalies in Power Distribution System Using Outlier Filtered Weighted Least Square

This work presents a new algorithm for detecting and classifying data anomalies in operational measurements using statistical, clustering, and outlier-based approaches. Base detectors explored in this work includes density-based spatial clustering of applications with noise, K-Means, local outlier f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2024-05, Vol.20 (5), p.7513-7523
Hauptverfasser: Gholami, Amir, Tiwari, Ashutosh, Qin, Chuan, Pannala, Sanjeev, Srivastava, Anurag K., Sharma, Roshan, Pandey, Shikhar, Rahmatian, Farnoosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7523
container_issue 5
container_start_page 7513
container_title IEEE transactions on industrial informatics
container_volume 20
creator Gholami, Amir
Tiwari, Ashutosh
Qin, Chuan
Pannala, Sanjeev
Srivastava, Anurag K.
Sharma, Roshan
Pandey, Shikhar
Rahmatian, Farnoosh
description This work presents a new algorithm for detecting and classifying data anomalies in operational measurements using statistical, clustering, and outlier-based approaches. Base detectors explored in this work includes density-based spatial clustering of applications with noise, K-Means, local outlier factor, feature bagging, and robust random cut forests using real distribution system datasets. An ensemble approach is proposed to achieve high detection accuracy and precision compared with any of the base detector and with less dependency on hyperparameter tuning. Also, developed ensemble architecture can integrate additional base detectors. In addition, a simplistic anomaly classification approach is developed, utilizing the clustering concept, while considering the physics of the power distribution systems. The developed schemes are rigorously tested and validated using data from multiple distribution phasor measurement unit devices in the Bronzeville community microgrid, with a diverse set of events and distributed energy resources at dispersed locations. Performance analysis using three test cases are provided to showcase superiority of the proposed approaches.
doi_str_mv 10.1109/TII.2024.3360523
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2024_3360523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10438880</ieee_id><sourcerecordid>3052200641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-a8bf6a102a658a649560f187120619fd8d02b34749e64d4e7905952b7f478eb53</originalsourceid><addsrcrecordid>eNpNkE1rwkAQhkNpodb23kMPCz3Hzn4l2aNobQXBgkqPyyaZ2BVNdHdD8d83fhx6mpfheWfgiaJnCgNKQb0tp9MBAyYGnCcgGb-JelQJGgNIuO2ylDTmDPh99OD9BoCnwFUv8mMMWATb1MTUJRltjfe2soU5r5qKDOtmZ7YWPbE1-Wp-0ZGx9cHZvD0ji6MPuCMrb-s1mbehQx2Z2G1AhyX5Rrv-CV2YofGBLA6tcfgY3VVm6_HpOvvRavK-HH3Gs_nHdDScxQVTLMQmy6vEUGAmkZlJhJIJVDRLKYOEqqrMSmA5F6lQmIhSYKpAKsnytBJphrnk_ej1cnfvmkOLPuhN07q6e6l5p4gBJIJ2FFyowjXeO6z03tmdcUdNQZ_U6k6tPqnVV7Vd5eVSsYj4Dxc8yzLgf_5UdNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052200641</pqid></control><display><type>article</type><title>Detection and Classification of Anomalies in Power Distribution System Using Outlier Filtered Weighted Least Square</title><source>IEEE Electronic Library (IEL)</source><creator>Gholami, Amir ; Tiwari, Ashutosh ; Qin, Chuan ; Pannala, Sanjeev ; Srivastava, Anurag K. ; Sharma, Roshan ; Pandey, Shikhar ; Rahmatian, Farnoosh</creator><creatorcontrib>Gholami, Amir ; Tiwari, Ashutosh ; Qin, Chuan ; Pannala, Sanjeev ; Srivastava, Anurag K. ; Sharma, Roshan ; Pandey, Shikhar ; Rahmatian, Farnoosh</creatorcontrib><description>This work presents a new algorithm for detecting and classifying data anomalies in operational measurements using statistical, clustering, and outlier-based approaches. Base detectors explored in this work includes density-based spatial clustering of applications with noise, K-Means, local outlier factor, feature bagging, and robust random cut forests using real distribution system datasets. An ensemble approach is proposed to achieve high detection accuracy and precision compared with any of the base detector and with less dependency on hyperparameter tuning. Also, developed ensemble architecture can integrate additional base detectors. In addition, a simplistic anomaly classification approach is developed, utilizing the clustering concept, while considering the physics of the power distribution systems. The developed schemes are rigorously tested and validated using data from multiple distribution phasor measurement unit devices in the Bronzeville community microgrid, with a diverse set of events and distributed energy resources at dispersed locations. Performance analysis using three test cases are provided to showcase superiority of the proposed approaches.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3360523</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Anomalies ; Anomaly classification ; Anomaly detection ; Bagging ; Classification ; Clustering ; Data analysis ; Detectors ; Distributed generation ; distribution systems ; Elbow ; Electric power distribution ; Energy sources ; event detection ; Informatics ; Measuring instruments ; Outliers (statistics) ; Phasor measurement units ; phasor measurement units (PMUs) ; Phasors ; State estimation</subject><ispartof>IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7513-7523</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-a8bf6a102a658a649560f187120619fd8d02b34749e64d4e7905952b7f478eb53</citedby><cites>FETCH-LOGICAL-c292t-a8bf6a102a658a649560f187120619fd8d02b34749e64d4e7905952b7f478eb53</cites><orcidid>0000-0003-3760-9955 ; 0000-0001-7804-3690 ; 0000-0003-1134-5656 ; 0000-0003-3518-8018 ; 0000-0002-3839-5904 ; 0009-0002-2540-5875 ; 0000-0002-3729-2495 ; 0009-0002-5618-0584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10438880$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10438880$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gholami, Amir</creatorcontrib><creatorcontrib>Tiwari, Ashutosh</creatorcontrib><creatorcontrib>Qin, Chuan</creatorcontrib><creatorcontrib>Pannala, Sanjeev</creatorcontrib><creatorcontrib>Srivastava, Anurag K.</creatorcontrib><creatorcontrib>Sharma, Roshan</creatorcontrib><creatorcontrib>Pandey, Shikhar</creatorcontrib><creatorcontrib>Rahmatian, Farnoosh</creatorcontrib><title>Detection and Classification of Anomalies in Power Distribution System Using Outlier Filtered Weighted Least Square</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>This work presents a new algorithm for detecting and classifying data anomalies in operational measurements using statistical, clustering, and outlier-based approaches. Base detectors explored in this work includes density-based spatial clustering of applications with noise, K-Means, local outlier factor, feature bagging, and robust random cut forests using real distribution system datasets. An ensemble approach is proposed to achieve high detection accuracy and precision compared with any of the base detector and with less dependency on hyperparameter tuning. Also, developed ensemble architecture can integrate additional base detectors. In addition, a simplistic anomaly classification approach is developed, utilizing the clustering concept, while considering the physics of the power distribution systems. The developed schemes are rigorously tested and validated using data from multiple distribution phasor measurement unit devices in the Bronzeville community microgrid, with a diverse set of events and distributed energy resources at dispersed locations. Performance analysis using three test cases are provided to showcase superiority of the proposed approaches.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly classification</subject><subject>Anomaly detection</subject><subject>Bagging</subject><subject>Classification</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Detectors</subject><subject>Distributed generation</subject><subject>distribution systems</subject><subject>Elbow</subject><subject>Electric power distribution</subject><subject>Energy sources</subject><subject>event detection</subject><subject>Informatics</subject><subject>Measuring instruments</subject><subject>Outliers (statistics)</subject><subject>Phasor measurement units</subject><subject>phasor measurement units (PMUs)</subject><subject>Phasors</subject><subject>State estimation</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rwkAQhkNpodb23kMPCz3Hzn4l2aNobQXBgkqPyyaZ2BVNdHdD8d83fhx6mpfheWfgiaJnCgNKQb0tp9MBAyYGnCcgGb-JelQJGgNIuO2ylDTmDPh99OD9BoCnwFUv8mMMWATb1MTUJRltjfe2soU5r5qKDOtmZ7YWPbE1-Wp-0ZGx9cHZvD0ji6MPuCMrb-s1mbehQx2Z2G1AhyX5Rrv-CV2YofGBLA6tcfgY3VVm6_HpOvvRavK-HH3Gs_nHdDScxQVTLMQmy6vEUGAmkZlJhJIJVDRLKYOEqqrMSmA5F6lQmIhSYKpAKsnytBJphrnk_ej1cnfvmkOLPuhN07q6e6l5p4gBJIJ2FFyowjXeO6z03tmdcUdNQZ_U6k6tPqnVV7Vd5eVSsYj4Dxc8yzLgf_5UdNM</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Gholami, Amir</creator><creator>Tiwari, Ashutosh</creator><creator>Qin, Chuan</creator><creator>Pannala, Sanjeev</creator><creator>Srivastava, Anurag K.</creator><creator>Sharma, Roshan</creator><creator>Pandey, Shikhar</creator><creator>Rahmatian, Farnoosh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3760-9955</orcidid><orcidid>https://orcid.org/0000-0001-7804-3690</orcidid><orcidid>https://orcid.org/0000-0003-1134-5656</orcidid><orcidid>https://orcid.org/0000-0003-3518-8018</orcidid><orcidid>https://orcid.org/0000-0002-3839-5904</orcidid><orcidid>https://orcid.org/0009-0002-2540-5875</orcidid><orcidid>https://orcid.org/0000-0002-3729-2495</orcidid><orcidid>https://orcid.org/0009-0002-5618-0584</orcidid></search><sort><creationdate>20240501</creationdate><title>Detection and Classification of Anomalies in Power Distribution System Using Outlier Filtered Weighted Least Square</title><author>Gholami, Amir ; Tiwari, Ashutosh ; Qin, Chuan ; Pannala, Sanjeev ; Srivastava, Anurag K. ; Sharma, Roshan ; Pandey, Shikhar ; Rahmatian, Farnoosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-a8bf6a102a658a649560f187120619fd8d02b34749e64d4e7905952b7f478eb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly classification</topic><topic>Anomaly detection</topic><topic>Bagging</topic><topic>Classification</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Detectors</topic><topic>Distributed generation</topic><topic>distribution systems</topic><topic>Elbow</topic><topic>Electric power distribution</topic><topic>Energy sources</topic><topic>event detection</topic><topic>Informatics</topic><topic>Measuring instruments</topic><topic>Outliers (statistics)</topic><topic>Phasor measurement units</topic><topic>phasor measurement units (PMUs)</topic><topic>Phasors</topic><topic>State estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Gholami, Amir</creatorcontrib><creatorcontrib>Tiwari, Ashutosh</creatorcontrib><creatorcontrib>Qin, Chuan</creatorcontrib><creatorcontrib>Pannala, Sanjeev</creatorcontrib><creatorcontrib>Srivastava, Anurag K.</creatorcontrib><creatorcontrib>Sharma, Roshan</creatorcontrib><creatorcontrib>Pandey, Shikhar</creatorcontrib><creatorcontrib>Rahmatian, Farnoosh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gholami, Amir</au><au>Tiwari, Ashutosh</au><au>Qin, Chuan</au><au>Pannala, Sanjeev</au><au>Srivastava, Anurag K.</au><au>Sharma, Roshan</au><au>Pandey, Shikhar</au><au>Rahmatian, Farnoosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Classification of Anomalies in Power Distribution System Using Outlier Filtered Weighted Least Square</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>7513</spage><epage>7523</epage><pages>7513-7523</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>This work presents a new algorithm for detecting and classifying data anomalies in operational measurements using statistical, clustering, and outlier-based approaches. Base detectors explored in this work includes density-based spatial clustering of applications with noise, K-Means, local outlier factor, feature bagging, and robust random cut forests using real distribution system datasets. An ensemble approach is proposed to achieve high detection accuracy and precision compared with any of the base detector and with less dependency on hyperparameter tuning. Also, developed ensemble architecture can integrate additional base detectors. In addition, a simplistic anomaly classification approach is developed, utilizing the clustering concept, while considering the physics of the power distribution systems. The developed schemes are rigorously tested and validated using data from multiple distribution phasor measurement unit devices in the Bronzeville community microgrid, with a diverse set of events and distributed energy resources at dispersed locations. Performance analysis using three test cases are provided to showcase superiority of the proposed approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3360523</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3760-9955</orcidid><orcidid>https://orcid.org/0000-0001-7804-3690</orcidid><orcidid>https://orcid.org/0000-0003-1134-5656</orcidid><orcidid>https://orcid.org/0000-0003-3518-8018</orcidid><orcidid>https://orcid.org/0000-0002-3839-5904</orcidid><orcidid>https://orcid.org/0009-0002-2540-5875</orcidid><orcidid>https://orcid.org/0000-0002-3729-2495</orcidid><orcidid>https://orcid.org/0009-0002-5618-0584</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7513-7523
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2024_3360523
source IEEE Electronic Library (IEL)
subjects Algorithms
Anomalies
Anomaly classification
Anomaly detection
Bagging
Classification
Clustering
Data analysis
Detectors
Distributed generation
distribution systems
Elbow
Electric power distribution
Energy sources
event detection
Informatics
Measuring instruments
Outliers (statistics)
Phasor measurement units
phasor measurement units (PMUs)
Phasors
State estimation
title Detection and Classification of Anomalies in Power Distribution System Using Outlier Filtered Weighted Least Square
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Classification%20of%20Anomalies%20in%20Power%20Distribution%20System%20Using%20Outlier%20Filtered%20Weighted%20Least%20Square&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Gholami,%20Amir&rft.date=2024-05-01&rft.volume=20&rft.issue=5&rft.spage=7513&rft.epage=7523&rft.pages=7513-7523&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3360523&rft_dat=%3Cproquest_RIE%3E3052200641%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052200641&rft_id=info:pmid/&rft_ieee_id=10438880&rfr_iscdi=true