A KLMS Dual Control Chart Based on Dynamic Nearest Neighbor Kernel Space
Traditional projection dynamic monitoring methods focus on simultaneously decoupling the correlations among the process variables and the autocorrelations of the variables, which leads to a mixing problem of the two correlations. The mixing problem decreases the ability to model the dynamic correlat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2023-05, Vol.19 (5), p.6950-6962 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6962 |
---|---|
container_issue | 5 |
container_start_page | 6950 |
container_title | IEEE transactions on industrial informatics |
container_volume | 19 |
creator | Liu, Liang Liu, Jianchang Wang, Honghai Tan, Shubin Guo, Qingxiu Sun, Xiaoyu |
description | Traditional projection dynamic monitoring methods focus on simultaneously decoupling the correlations among the process variables and the autocorrelations of the variables, which leads to a mixing problem of the two correlations. The mixing problem decreases the ability to model the dynamic correlations, thus decreasing the detection rates (DRs) of some faults. Considering that the projection matrix may cause the mixing of the two correlations, this article proposes a dynamic monitoring method based on directly monitoring original variables. This article first adopts the kernel least-mean-squares (KLMS) method to establish a univariate dynamic model, then adopts the univariate dynamic model and the dual control chart (DCC) to build the multivariate direct monitoring method, which is named the KL2C method (KL represents KLMS and 2 C represents DCC). Then, the dynamic nearest neighbor kernel space (DNNKS) is proposed to overcome the redundant dimensions problem of the KL2C method, which is named the DKL2C method (D represents DNNKS). Furthermore, based on the joint control chart, this article puts forward a dynamic monitoring method of two sequences, which both considers the advantages of the projection dynamic monitoring method and the direct dynamic monitoring method together. Finally, this article utilizes the Tennessee Eastman process and the continuously stirred tank reactor process to verify the effectiveness of the proposed methods. |
doi_str_mv | 10.1109/TII.2022.3209248 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2022_3209248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903324</ieee_id><sourcerecordid>2809898905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-54f712cbddfea4e3c7928bc652a705cc90a7e692691979eedf9d1bd50926ac333</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExG9m3jZxHNxdrfbdo4IKATUA3jebLdTKYEWt-XAv3cJxMzhnWTe-XoYexQwEALwZTWbDSRIOVASUMbZFesJjEUEoOE65FqLKJTULbtr2w2ASkFhj02HfL74WPLxwW75qKk73wRdW9_xV9tSwZuaj4-13VWOf5L11HZBq5913ng-J1_Tli_31tE9uynttqWHi_bZ99tkNZpGi6_32Wi4iJxE0UU6LlMhXV4UJdmYlEtRZrlLtLQpaOcQbEoJygQFpkhUlFiIvNDhp8Q6pVSfPZ_n7n3zewjnmE1z8HVYaWQGmIUAHVxwdjnftK2n0ux9tbP-aASYEy8TeJkTL3PhFVqezi0VEf3bEUEpGas_kXFkUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809898905</pqid></control><display><type>article</type><title>A KLMS Dual Control Chart Based on Dynamic Nearest Neighbor Kernel Space</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Liang ; Liu, Jianchang ; Wang, Honghai ; Tan, Shubin ; Guo, Qingxiu ; Sun, Xiaoyu</creator><creatorcontrib>Liu, Liang ; Liu, Jianchang ; Wang, Honghai ; Tan, Shubin ; Guo, Qingxiu ; Sun, Xiaoyu</creatorcontrib><description>Traditional projection dynamic monitoring methods focus on simultaneously decoupling the correlations among the process variables and the autocorrelations of the variables, which leads to a mixing problem of the two correlations. The mixing problem decreases the ability to model the dynamic correlations, thus decreasing the detection rates (DRs) of some faults. Considering that the projection matrix may cause the mixing of the two correlations, this article proposes a dynamic monitoring method based on directly monitoring original variables. This article first adopts the kernel least-mean-squares (KLMS) method to establish a univariate dynamic model, then adopts the univariate dynamic model and the dual control chart (DCC) to build the multivariate direct monitoring method, which is named the KL2C method (KL represents KLMS and 2 C represents DCC). Then, the dynamic nearest neighbor kernel space (DNNKS) is proposed to overcome the redundant dimensions problem of the KL2C method, which is named the DKL2C method (D represents DNNKS). Furthermore, based on the joint control chart, this article puts forward a dynamic monitoring method of two sequences, which both considers the advantages of the projection dynamic monitoring method and the direct dynamic monitoring method together. Finally, this article utilizes the Tennessee Eastman process and the continuously stirred tank reactor process to verify the effectiveness of the proposed methods.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3209248</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Continuously stirred tank reactors ; Control charts ; Correlation ; Decoupling ; DKL2C ; Dual control chart (DCC) ; Dynamic models ; dynamic nearest neighbor kernel space (DNNKS) ; Fault detection ; Informatics ; Kernel ; kernel least mean square (KLMS) ; Kernels ; KL2C ; Monitoring ; Principal component analysis ; Process variables ; Tennessee Eastman (TE) process</subject><ispartof>IEEE transactions on industrial informatics, 2023-05, Vol.19 (5), p.6950-6962</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-54f712cbddfea4e3c7928bc652a705cc90a7e692691979eedf9d1bd50926ac333</citedby><cites>FETCH-LOGICAL-c291t-54f712cbddfea4e3c7928bc652a705cc90a7e692691979eedf9d1bd50926ac333</cites><orcidid>0000-0003-3176-353X ; 0000-0003-4744-0479 ; 0000-0002-2801-8312 ; 0000-0002-9811-6508 ; 0000-0003-0580-1387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903324$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9903324$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Liu, Jianchang</creatorcontrib><creatorcontrib>Wang, Honghai</creatorcontrib><creatorcontrib>Tan, Shubin</creatorcontrib><creatorcontrib>Guo, Qingxiu</creatorcontrib><creatorcontrib>Sun, Xiaoyu</creatorcontrib><title>A KLMS Dual Control Chart Based on Dynamic Nearest Neighbor Kernel Space</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Traditional projection dynamic monitoring methods focus on simultaneously decoupling the correlations among the process variables and the autocorrelations of the variables, which leads to a mixing problem of the two correlations. The mixing problem decreases the ability to model the dynamic correlations, thus decreasing the detection rates (DRs) of some faults. Considering that the projection matrix may cause the mixing of the two correlations, this article proposes a dynamic monitoring method based on directly monitoring original variables. This article first adopts the kernel least-mean-squares (KLMS) method to establish a univariate dynamic model, then adopts the univariate dynamic model and the dual control chart (DCC) to build the multivariate direct monitoring method, which is named the KL2C method (KL represents KLMS and 2 C represents DCC). Then, the dynamic nearest neighbor kernel space (DNNKS) is proposed to overcome the redundant dimensions problem of the KL2C method, which is named the DKL2C method (D represents DNNKS). Furthermore, based on the joint control chart, this article puts forward a dynamic monitoring method of two sequences, which both considers the advantages of the projection dynamic monitoring method and the direct dynamic monitoring method together. Finally, this article utilizes the Tennessee Eastman process and the continuously stirred tank reactor process to verify the effectiveness of the proposed methods.</description><subject>Adaptation models</subject><subject>Continuously stirred tank reactors</subject><subject>Control charts</subject><subject>Correlation</subject><subject>Decoupling</subject><subject>DKL2C</subject><subject>Dual control chart (DCC)</subject><subject>Dynamic models</subject><subject>dynamic nearest neighbor kernel space (DNNKS)</subject><subject>Fault detection</subject><subject>Informatics</subject><subject>Kernel</subject><subject>kernel least mean square (KLMS)</subject><subject>Kernels</subject><subject>KL2C</subject><subject>Monitoring</subject><subject>Principal component analysis</subject><subject>Process variables</subject><subject>Tennessee Eastman (TE) process</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExG9m3jZxHNxdrfbdo4IKATUA3jebLdTKYEWt-XAv3cJxMzhnWTe-XoYexQwEALwZTWbDSRIOVASUMbZFesJjEUEoOE65FqLKJTULbtr2w2ASkFhj02HfL74WPLxwW75qKk73wRdW9_xV9tSwZuaj4-13VWOf5L11HZBq5913ng-J1_Tli_31tE9uynttqWHi_bZ99tkNZpGi6_32Wi4iJxE0UU6LlMhXV4UJdmYlEtRZrlLtLQpaOcQbEoJygQFpkhUlFiIvNDhp8Q6pVSfPZ_n7n3zewjnmE1z8HVYaWQGmIUAHVxwdjnftK2n0ux9tbP-aASYEy8TeJkTL3PhFVqezi0VEf3bEUEpGas_kXFkUg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Liu, Liang</creator><creator>Liu, Jianchang</creator><creator>Wang, Honghai</creator><creator>Tan, Shubin</creator><creator>Guo, Qingxiu</creator><creator>Sun, Xiaoyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3176-353X</orcidid><orcidid>https://orcid.org/0000-0003-4744-0479</orcidid><orcidid>https://orcid.org/0000-0002-2801-8312</orcidid><orcidid>https://orcid.org/0000-0002-9811-6508</orcidid><orcidid>https://orcid.org/0000-0003-0580-1387</orcidid></search><sort><creationdate>20230501</creationdate><title>A KLMS Dual Control Chart Based on Dynamic Nearest Neighbor Kernel Space</title><author>Liu, Liang ; Liu, Jianchang ; Wang, Honghai ; Tan, Shubin ; Guo, Qingxiu ; Sun, Xiaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-54f712cbddfea4e3c7928bc652a705cc90a7e692691979eedf9d1bd50926ac333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Continuously stirred tank reactors</topic><topic>Control charts</topic><topic>Correlation</topic><topic>Decoupling</topic><topic>DKL2C</topic><topic>Dual control chart (DCC)</topic><topic>Dynamic models</topic><topic>dynamic nearest neighbor kernel space (DNNKS)</topic><topic>Fault detection</topic><topic>Informatics</topic><topic>Kernel</topic><topic>kernel least mean square (KLMS)</topic><topic>Kernels</topic><topic>KL2C</topic><topic>Monitoring</topic><topic>Principal component analysis</topic><topic>Process variables</topic><topic>Tennessee Eastman (TE) process</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Liu, Jianchang</creatorcontrib><creatorcontrib>Wang, Honghai</creatorcontrib><creatorcontrib>Tan, Shubin</creatorcontrib><creatorcontrib>Guo, Qingxiu</creatorcontrib><creatorcontrib>Sun, Xiaoyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Liang</au><au>Liu, Jianchang</au><au>Wang, Honghai</au><au>Tan, Shubin</au><au>Guo, Qingxiu</au><au>Sun, Xiaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A KLMS Dual Control Chart Based on Dynamic Nearest Neighbor Kernel Space</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>19</volume><issue>5</issue><spage>6950</spage><epage>6962</epage><pages>6950-6962</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Traditional projection dynamic monitoring methods focus on simultaneously decoupling the correlations among the process variables and the autocorrelations of the variables, which leads to a mixing problem of the two correlations. The mixing problem decreases the ability to model the dynamic correlations, thus decreasing the detection rates (DRs) of some faults. Considering that the projection matrix may cause the mixing of the two correlations, this article proposes a dynamic monitoring method based on directly monitoring original variables. This article first adopts the kernel least-mean-squares (KLMS) method to establish a univariate dynamic model, then adopts the univariate dynamic model and the dual control chart (DCC) to build the multivariate direct monitoring method, which is named the KL2C method (KL represents KLMS and 2 C represents DCC). Then, the dynamic nearest neighbor kernel space (DNNKS) is proposed to overcome the redundant dimensions problem of the KL2C method, which is named the DKL2C method (D represents DNNKS). Furthermore, based on the joint control chart, this article puts forward a dynamic monitoring method of two sequences, which both considers the advantages of the projection dynamic monitoring method and the direct dynamic monitoring method together. Finally, this article utilizes the Tennessee Eastman process and the continuously stirred tank reactor process to verify the effectiveness of the proposed methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3209248</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3176-353X</orcidid><orcidid>https://orcid.org/0000-0003-4744-0479</orcidid><orcidid>https://orcid.org/0000-0002-2801-8312</orcidid><orcidid>https://orcid.org/0000-0002-9811-6508</orcidid><orcidid>https://orcid.org/0000-0003-0580-1387</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2023-05, Vol.19 (5), p.6950-6962 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2022_3209248 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Continuously stirred tank reactors Control charts Correlation Decoupling DKL2C Dual control chart (DCC) Dynamic models dynamic nearest neighbor kernel space (DNNKS) Fault detection Informatics Kernel kernel least mean square (KLMS) Kernels KL2C Monitoring Principal component analysis Process variables Tennessee Eastman (TE) process |
title | A KLMS Dual Control Chart Based on Dynamic Nearest Neighbor Kernel Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20KLMS%20Dual%20Control%20Chart%20Based%20on%20Dynamic%20Nearest%20Neighbor%20Kernel%20Space&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Liang&rft.date=2023-05-01&rft.volume=19&rft.issue=5&rft.spage=6950&rft.epage=6962&rft.pages=6950-6962&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3209248&rft_dat=%3Cproquest_RIE%3E2809898905%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809898905&rft_id=info:pmid/&rft_ieee_id=9903324&rfr_iscdi=true |