A KLMS Dual Control Chart Based on Dynamic Nearest Neighbor Kernel Space

Traditional projection dynamic monitoring methods focus on simultaneously decoupling the correlations among the process variables and the autocorrelations of the variables, which leads to a mixing problem of the two correlations. The mixing problem decreases the ability to model the dynamic correlat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-05, Vol.19 (5), p.6950-6962
Hauptverfasser: Liu, Liang, Liu, Jianchang, Wang, Honghai, Tan, Shubin, Guo, Qingxiu, Sun, Xiaoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6962
container_issue 5
container_start_page 6950
container_title IEEE transactions on industrial informatics
container_volume 19
creator Liu, Liang
Liu, Jianchang
Wang, Honghai
Tan, Shubin
Guo, Qingxiu
Sun, Xiaoyu
description Traditional projection dynamic monitoring methods focus on simultaneously decoupling the correlations among the process variables and the autocorrelations of the variables, which leads to a mixing problem of the two correlations. The mixing problem decreases the ability to model the dynamic correlations, thus decreasing the detection rates (DRs) of some faults. Considering that the projection matrix may cause the mixing of the two correlations, this article proposes a dynamic monitoring method based on directly monitoring original variables. This article first adopts the kernel least-mean-squares (KLMS) method to establish a univariate dynamic model, then adopts the univariate dynamic model and the dual control chart (DCC) to build the multivariate direct monitoring method, which is named the KL2C method (KL represents KLMS and 2 C represents DCC). Then, the dynamic nearest neighbor kernel space (DNNKS) is proposed to overcome the redundant dimensions problem of the KL2C method, which is named the DKL2C method (D represents DNNKS). Furthermore, based on the joint control chart, this article puts forward a dynamic monitoring method of two sequences, which both considers the advantages of the projection dynamic monitoring method and the direct dynamic monitoring method together. Finally, this article utilizes the Tennessee Eastman process and the continuously stirred tank reactor process to verify the effectiveness of the proposed methods.
doi_str_mv 10.1109/TII.2022.3209248
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2022_3209248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903324</ieee_id><sourcerecordid>2809898905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-54f712cbddfea4e3c7928bc652a705cc90a7e692691979eedf9d1bd50926ac333</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExG9m3jZxHNxdrfbdo4IKATUA3jebLdTKYEWt-XAv3cJxMzhnWTe-XoYexQwEALwZTWbDSRIOVASUMbZFesJjEUEoOE65FqLKJTULbtr2w2ASkFhj02HfL74WPLxwW75qKk73wRdW9_xV9tSwZuaj4-13VWOf5L11HZBq5913ng-J1_Tli_31tE9uynttqWHi_bZ99tkNZpGi6_32Wi4iJxE0UU6LlMhXV4UJdmYlEtRZrlLtLQpaOcQbEoJygQFpkhUlFiIvNDhp8Q6pVSfPZ_n7n3zewjnmE1z8HVYaWQGmIUAHVxwdjnftK2n0ux9tbP-aASYEy8TeJkTL3PhFVqezi0VEf3bEUEpGas_kXFkUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809898905</pqid></control><display><type>article</type><title>A KLMS Dual Control Chart Based on Dynamic Nearest Neighbor Kernel Space</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Liang ; Liu, Jianchang ; Wang, Honghai ; Tan, Shubin ; Guo, Qingxiu ; Sun, Xiaoyu</creator><creatorcontrib>Liu, Liang ; Liu, Jianchang ; Wang, Honghai ; Tan, Shubin ; Guo, Qingxiu ; Sun, Xiaoyu</creatorcontrib><description>Traditional projection dynamic monitoring methods focus on simultaneously decoupling the correlations among the process variables and the autocorrelations of the variables, which leads to a mixing problem of the two correlations. The mixing problem decreases the ability to model the dynamic correlations, thus decreasing the detection rates (DRs) of some faults. Considering that the projection matrix may cause the mixing of the two correlations, this article proposes a dynamic monitoring method based on directly monitoring original variables. This article first adopts the kernel least-mean-squares (KLMS) method to establish a univariate dynamic model, then adopts the univariate dynamic model and the dual control chart (DCC) to build the multivariate direct monitoring method, which is named the KL2C method (KL represents KLMS and 2 C represents DCC). Then, the dynamic nearest neighbor kernel space (DNNKS) is proposed to overcome the redundant dimensions problem of the KL2C method, which is named the DKL2C method (D represents DNNKS). Furthermore, based on the joint control chart, this article puts forward a dynamic monitoring method of two sequences, which both considers the advantages of the projection dynamic monitoring method and the direct dynamic monitoring method together. Finally, this article utilizes the Tennessee Eastman process and the continuously stirred tank reactor process to verify the effectiveness of the proposed methods.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3209248</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Continuously stirred tank reactors ; Control charts ; Correlation ; Decoupling ; DKL2C ; Dual control chart (DCC) ; Dynamic models ; dynamic nearest neighbor kernel space (DNNKS) ; Fault detection ; Informatics ; Kernel ; kernel least mean square (KLMS) ; Kernels ; KL2C ; Monitoring ; Principal component analysis ; Process variables ; Tennessee Eastman (TE) process</subject><ispartof>IEEE transactions on industrial informatics, 2023-05, Vol.19 (5), p.6950-6962</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-54f712cbddfea4e3c7928bc652a705cc90a7e692691979eedf9d1bd50926ac333</citedby><cites>FETCH-LOGICAL-c291t-54f712cbddfea4e3c7928bc652a705cc90a7e692691979eedf9d1bd50926ac333</cites><orcidid>0000-0003-3176-353X ; 0000-0003-4744-0479 ; 0000-0002-2801-8312 ; 0000-0002-9811-6508 ; 0000-0003-0580-1387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903324$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9903324$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Liu, Jianchang</creatorcontrib><creatorcontrib>Wang, Honghai</creatorcontrib><creatorcontrib>Tan, Shubin</creatorcontrib><creatorcontrib>Guo, Qingxiu</creatorcontrib><creatorcontrib>Sun, Xiaoyu</creatorcontrib><title>A KLMS Dual Control Chart Based on Dynamic Nearest Neighbor Kernel Space</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Traditional projection dynamic monitoring methods focus on simultaneously decoupling the correlations among the process variables and the autocorrelations of the variables, which leads to a mixing problem of the two correlations. The mixing problem decreases the ability to model the dynamic correlations, thus decreasing the detection rates (DRs) of some faults. Considering that the projection matrix may cause the mixing of the two correlations, this article proposes a dynamic monitoring method based on directly monitoring original variables. This article first adopts the kernel least-mean-squares (KLMS) method to establish a univariate dynamic model, then adopts the univariate dynamic model and the dual control chart (DCC) to build the multivariate direct monitoring method, which is named the KL2C method (KL represents KLMS and 2 C represents DCC). Then, the dynamic nearest neighbor kernel space (DNNKS) is proposed to overcome the redundant dimensions problem of the KL2C method, which is named the DKL2C method (D represents DNNKS). Furthermore, based on the joint control chart, this article puts forward a dynamic monitoring method of two sequences, which both considers the advantages of the projection dynamic monitoring method and the direct dynamic monitoring method together. Finally, this article utilizes the Tennessee Eastman process and the continuously stirred tank reactor process to verify the effectiveness of the proposed methods.</description><subject>Adaptation models</subject><subject>Continuously stirred tank reactors</subject><subject>Control charts</subject><subject>Correlation</subject><subject>Decoupling</subject><subject>DKL2C</subject><subject>Dual control chart (DCC)</subject><subject>Dynamic models</subject><subject>dynamic nearest neighbor kernel space (DNNKS)</subject><subject>Fault detection</subject><subject>Informatics</subject><subject>Kernel</subject><subject>kernel least mean square (KLMS)</subject><subject>Kernels</subject><subject>KL2C</subject><subject>Monitoring</subject><subject>Principal component analysis</subject><subject>Process variables</subject><subject>Tennessee Eastman (TE) process</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExG9m3jZxHNxdrfbdo4IKATUA3jebLdTKYEWt-XAv3cJxMzhnWTe-XoYexQwEALwZTWbDSRIOVASUMbZFesJjEUEoOE65FqLKJTULbtr2w2ASkFhj02HfL74WPLxwW75qKk73wRdW9_xV9tSwZuaj4-13VWOf5L11HZBq5913ng-J1_Tli_31tE9uynttqWHi_bZ99tkNZpGi6_32Wi4iJxE0UU6LlMhXV4UJdmYlEtRZrlLtLQpaOcQbEoJygQFpkhUlFiIvNDhp8Q6pVSfPZ_n7n3zewjnmE1z8HVYaWQGmIUAHVxwdjnftK2n0ux9tbP-aASYEy8TeJkTL3PhFVqezi0VEf3bEUEpGas_kXFkUg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Liu, Liang</creator><creator>Liu, Jianchang</creator><creator>Wang, Honghai</creator><creator>Tan, Shubin</creator><creator>Guo, Qingxiu</creator><creator>Sun, Xiaoyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3176-353X</orcidid><orcidid>https://orcid.org/0000-0003-4744-0479</orcidid><orcidid>https://orcid.org/0000-0002-2801-8312</orcidid><orcidid>https://orcid.org/0000-0002-9811-6508</orcidid><orcidid>https://orcid.org/0000-0003-0580-1387</orcidid></search><sort><creationdate>20230501</creationdate><title>A KLMS Dual Control Chart Based on Dynamic Nearest Neighbor Kernel Space</title><author>Liu, Liang ; Liu, Jianchang ; Wang, Honghai ; Tan, Shubin ; Guo, Qingxiu ; Sun, Xiaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-54f712cbddfea4e3c7928bc652a705cc90a7e692691979eedf9d1bd50926ac333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Continuously stirred tank reactors</topic><topic>Control charts</topic><topic>Correlation</topic><topic>Decoupling</topic><topic>DKL2C</topic><topic>Dual control chart (DCC)</topic><topic>Dynamic models</topic><topic>dynamic nearest neighbor kernel space (DNNKS)</topic><topic>Fault detection</topic><topic>Informatics</topic><topic>Kernel</topic><topic>kernel least mean square (KLMS)</topic><topic>Kernels</topic><topic>KL2C</topic><topic>Monitoring</topic><topic>Principal component analysis</topic><topic>Process variables</topic><topic>Tennessee Eastman (TE) process</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Liu, Jianchang</creatorcontrib><creatorcontrib>Wang, Honghai</creatorcontrib><creatorcontrib>Tan, Shubin</creatorcontrib><creatorcontrib>Guo, Qingxiu</creatorcontrib><creatorcontrib>Sun, Xiaoyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Liang</au><au>Liu, Jianchang</au><au>Wang, Honghai</au><au>Tan, Shubin</au><au>Guo, Qingxiu</au><au>Sun, Xiaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A KLMS Dual Control Chart Based on Dynamic Nearest Neighbor Kernel Space</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>19</volume><issue>5</issue><spage>6950</spage><epage>6962</epage><pages>6950-6962</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Traditional projection dynamic monitoring methods focus on simultaneously decoupling the correlations among the process variables and the autocorrelations of the variables, which leads to a mixing problem of the two correlations. The mixing problem decreases the ability to model the dynamic correlations, thus decreasing the detection rates (DRs) of some faults. Considering that the projection matrix may cause the mixing of the two correlations, this article proposes a dynamic monitoring method based on directly monitoring original variables. This article first adopts the kernel least-mean-squares (KLMS) method to establish a univariate dynamic model, then adopts the univariate dynamic model and the dual control chart (DCC) to build the multivariate direct monitoring method, which is named the KL2C method (KL represents KLMS and 2 C represents DCC). Then, the dynamic nearest neighbor kernel space (DNNKS) is proposed to overcome the redundant dimensions problem of the KL2C method, which is named the DKL2C method (D represents DNNKS). Furthermore, based on the joint control chart, this article puts forward a dynamic monitoring method of two sequences, which both considers the advantages of the projection dynamic monitoring method and the direct dynamic monitoring method together. Finally, this article utilizes the Tennessee Eastman process and the continuously stirred tank reactor process to verify the effectiveness of the proposed methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3209248</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3176-353X</orcidid><orcidid>https://orcid.org/0000-0003-4744-0479</orcidid><orcidid>https://orcid.org/0000-0002-2801-8312</orcidid><orcidid>https://orcid.org/0000-0002-9811-6508</orcidid><orcidid>https://orcid.org/0000-0003-0580-1387</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2023-05, Vol.19 (5), p.6950-6962
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2022_3209248
source IEEE Electronic Library (IEL)
subjects Adaptation models
Continuously stirred tank reactors
Control charts
Correlation
Decoupling
DKL2C
Dual control chart (DCC)
Dynamic models
dynamic nearest neighbor kernel space (DNNKS)
Fault detection
Informatics
Kernel
kernel least mean square (KLMS)
Kernels
KL2C
Monitoring
Principal component analysis
Process variables
Tennessee Eastman (TE) process
title A KLMS Dual Control Chart Based on Dynamic Nearest Neighbor Kernel Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20KLMS%20Dual%20Control%20Chart%20Based%20on%20Dynamic%20Nearest%20Neighbor%20Kernel%20Space&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Liang&rft.date=2023-05-01&rft.volume=19&rft.issue=5&rft.spage=6950&rft.epage=6962&rft.pages=6950-6962&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3209248&rft_dat=%3Cproquest_RIE%3E2809898905%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809898905&rft_id=info:pmid/&rft_ieee_id=9903324&rfr_iscdi=true