Lightweight Convolutional Neural Network Model for Human Face Detection in Risk Situations
In this article, we propose a model of face detection in risk situations to help rescue teams speed up the search of people who might need help. The proposed lightweight convolutional neural network (CNN) architecture is designed to detect faces of people in mines, avalanches, under water, or other...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2022-07, Vol.18 (7), p.4820-4829 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4829 |
---|---|
container_issue | 7 |
container_start_page | 4820 |
container_title | IEEE transactions on industrial informatics |
container_volume | 18 |
creator | Wieczorek, Michal Silka, Jakub Wozniak, Marcin Garg, Sahil Hassan, Mohammad Mehedi |
description | In this article, we propose a model of face detection in risk situations to help rescue teams speed up the search of people who might need help. The proposed lightweight convolutional neural network (CNN) architecture is designed to detect faces of people in mines, avalanches, under water, or other dangerous situations when their face might not be very visible over surrounding background. We have designed a novel light architecture cooperating with the proposed sliding window procedure. The designed model works with maximum simplicity to support mobile devices. An output from processing presents a box on face location in the screen of device. The model was trained by using Adam and tested on various images. Results show that proposed lightweight CNN detects human faces over various textures with accuracy above 99% and precision above 98% what proves the efficiency of our proposed model. |
doi_str_mv | 10.1109/TII.2021.3129629 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2021_3129629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9623479</ieee_id><sourcerecordid>2652700862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-73109b0baec351178b50180ae074ccc01031bb1e466af3687183fe087b5071843</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSMEEmNwR-ISiXOHnbRNe0SDsUkDJBgXLlUaXOjWLZC0TPx7UjZx8bPsz5b9GDtHGCFCfrWYzUYCBI4kijwV-QEbYB5jBJDAYciTBCMpQB6zE--XAFKBzAfsdV6_f7Rb6iMf2823bbq2thvd8Afq3J-0W-tW_N6-UcMr6_i0W-sNn2hD_IZaMj3P6w1_qv2KP9dtp_uKP2VHlW48ne11yF4mt4vxNJo_3s3G1_PIiEy1kZLh_BJKTUYmiCorE8AMNIGKjTGAILEskeI01ZVMM4WZrAgyFbiQx3LILnd7P5396si3xdJ2LnzgC5EmQgFkqQgU7CjjrPeOquLT1WvtfgqEonewCA4WvYPF3sEwcrEbqYnoHw8tGatc_gKNmWth</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652700862</pqid></control><display><type>article</type><title>Lightweight Convolutional Neural Network Model for Human Face Detection in Risk Situations</title><source>IEEE Electronic Library (IEL)</source><creator>Wieczorek, Michal ; Silka, Jakub ; Wozniak, Marcin ; Garg, Sahil ; Hassan, Mohammad Mehedi</creator><creatorcontrib>Wieczorek, Michal ; Silka, Jakub ; Wozniak, Marcin ; Garg, Sahil ; Hassan, Mohammad Mehedi</creatorcontrib><description>In this article, we propose a model of face detection in risk situations to help rescue teams speed up the search of people who might need help. The proposed lightweight convolutional neural network (CNN) architecture is designed to detect faces of people in mines, avalanches, under water, or other dangerous situations when their face might not be very visible over surrounding background. We have designed a novel light architecture cooperating with the proposed sliding window procedure. The designed model works with maximum simplicity to support mobile devices. An output from processing presents a box on face location in the screen of device. The model was trained by using Adam and tested on various images. Results show that proposed lightweight CNN detects human faces over various textures with accuracy above 99% and precision above 98% what proves the efficiency of our proposed model.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3129629</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; Convolutional neural networks ; Deep learning ; Electronic devices ; Face detection ; Face recognition ; Faces ; Informatics ; Lightweight ; lightweight convolutional neural network (CNN) ; Mobile handsets ; Neural networks</subject><ispartof>IEEE transactions on industrial informatics, 2022-07, Vol.18 (7), p.4820-4829</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-73109b0baec351178b50180ae074ccc01031bb1e466af3687183fe087b5071843</citedby><cites>FETCH-LOGICAL-c287t-73109b0baec351178b50180ae074ccc01031bb1e466af3687183fe087b5071843</cites><orcidid>0000-0001-9133-4388 ; 0000-0003-0229-608X ; 0000-0002-5319-3366 ; 0000-0002-9073-5347 ; 0000-0002-3479-3606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9623479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9623479$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wieczorek, Michal</creatorcontrib><creatorcontrib>Silka, Jakub</creatorcontrib><creatorcontrib>Wozniak, Marcin</creatorcontrib><creatorcontrib>Garg, Sahil</creatorcontrib><creatorcontrib>Hassan, Mohammad Mehedi</creatorcontrib><title>Lightweight Convolutional Neural Network Model for Human Face Detection in Risk Situations</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this article, we propose a model of face detection in risk situations to help rescue teams speed up the search of people who might need help. The proposed lightweight convolutional neural network (CNN) architecture is designed to detect faces of people in mines, avalanches, under water, or other dangerous situations when their face might not be very visible over surrounding background. We have designed a novel light architecture cooperating with the proposed sliding window procedure. The designed model works with maximum simplicity to support mobile devices. An output from processing presents a box on face location in the screen of device. The model was trained by using Adam and tested on various images. Results show that proposed lightweight CNN detects human faces over various textures with accuracy above 99% and precision above 98% what proves the efficiency of our proposed model.</description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Electronic devices</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Faces</subject><subject>Informatics</subject><subject>Lightweight</subject><subject>lightweight convolutional neural network (CNN)</subject><subject>Mobile handsets</subject><subject>Neural networks</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwzAMhSMEEmNwR-ISiXOHnbRNe0SDsUkDJBgXLlUaXOjWLZC0TPx7UjZx8bPsz5b9GDtHGCFCfrWYzUYCBI4kijwV-QEbYB5jBJDAYciTBCMpQB6zE--XAFKBzAfsdV6_f7Rb6iMf2823bbq2thvd8Afq3J-0W-tW_N6-UcMr6_i0W-sNn2hD_IZaMj3P6w1_qv2KP9dtp_uKP2VHlW48ne11yF4mt4vxNJo_3s3G1_PIiEy1kZLh_BJKTUYmiCorE8AMNIGKjTGAILEskeI01ZVMM4WZrAgyFbiQx3LILnd7P5396si3xdJ2LnzgC5EmQgFkqQgU7CjjrPeOquLT1WvtfgqEonewCA4WvYPF3sEwcrEbqYnoHw8tGatc_gKNmWth</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Wieczorek, Michal</creator><creator>Silka, Jakub</creator><creator>Wozniak, Marcin</creator><creator>Garg, Sahil</creator><creator>Hassan, Mohammad Mehedi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9133-4388</orcidid><orcidid>https://orcid.org/0000-0003-0229-608X</orcidid><orcidid>https://orcid.org/0000-0002-5319-3366</orcidid><orcidid>https://orcid.org/0000-0002-9073-5347</orcidid><orcidid>https://orcid.org/0000-0002-3479-3606</orcidid></search><sort><creationdate>20220701</creationdate><title>Lightweight Convolutional Neural Network Model for Human Face Detection in Risk Situations</title><author>Wieczorek, Michal ; Silka, Jakub ; Wozniak, Marcin ; Garg, Sahil ; Hassan, Mohammad Mehedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-73109b0baec351178b50180ae074ccc01031bb1e466af3687183fe087b5071843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Electronic devices</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Faces</topic><topic>Informatics</topic><topic>Lightweight</topic><topic>lightweight convolutional neural network (CNN)</topic><topic>Mobile handsets</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Wieczorek, Michal</creatorcontrib><creatorcontrib>Silka, Jakub</creatorcontrib><creatorcontrib>Wozniak, Marcin</creatorcontrib><creatorcontrib>Garg, Sahil</creatorcontrib><creatorcontrib>Hassan, Mohammad Mehedi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wieczorek, Michal</au><au>Silka, Jakub</au><au>Wozniak, Marcin</au><au>Garg, Sahil</au><au>Hassan, Mohammad Mehedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Convolutional Neural Network Model for Human Face Detection in Risk Situations</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>18</volume><issue>7</issue><spage>4820</spage><epage>4829</epage><pages>4820-4829</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this article, we propose a model of face detection in risk situations to help rescue teams speed up the search of people who might need help. The proposed lightweight convolutional neural network (CNN) architecture is designed to detect faces of people in mines, avalanches, under water, or other dangerous situations when their face might not be very visible over surrounding background. We have designed a novel light architecture cooperating with the proposed sliding window procedure. The designed model works with maximum simplicity to support mobile devices. An output from processing presents a box on face location in the screen of device. The model was trained by using Adam and tested on various images. Results show that proposed lightweight CNN detects human faces over various textures with accuracy above 99% and precision above 98% what proves the efficiency of our proposed model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3129629</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9133-4388</orcidid><orcidid>https://orcid.org/0000-0003-0229-608X</orcidid><orcidid>https://orcid.org/0000-0002-5319-3366</orcidid><orcidid>https://orcid.org/0000-0002-9073-5347</orcidid><orcidid>https://orcid.org/0000-0002-3479-3606</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2022-07, Vol.18 (7), p.4820-4829 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2021_3129629 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Computational modeling Convolutional neural networks Deep learning Electronic devices Face detection Face recognition Faces Informatics Lightweight lightweight convolutional neural network (CNN) Mobile handsets Neural networks |
title | Lightweight Convolutional Neural Network Model for Human Face Detection in Risk Situations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Convolutional%20Neural%20Network%20Model%20for%20Human%20Face%20Detection%20in%20Risk%20Situations&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Wieczorek,%20Michal&rft.date=2022-07-01&rft.volume=18&rft.issue=7&rft.spage=4820&rft.epage=4829&rft.pages=4820-4829&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3129629&rft_dat=%3Cproquest_RIE%3E2652700862%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652700862&rft_id=info:pmid/&rft_ieee_id=9623479&rfr_iscdi=true |