Lightweight Convolutional Neural Network Model for Human Face Detection in Risk Situations

In this article, we propose a model of face detection in risk situations to help rescue teams speed up the search of people who might need help. The proposed lightweight convolutional neural network (CNN) architecture is designed to detect faces of people in mines, avalanches, under water, or other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2022-07, Vol.18 (7), p.4820-4829
Hauptverfasser: Wieczorek, Michal, Silka, Jakub, Wozniak, Marcin, Garg, Sahil, Hassan, Mohammad Mehedi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4829
container_issue 7
container_start_page 4820
container_title IEEE transactions on industrial informatics
container_volume 18
creator Wieczorek, Michal
Silka, Jakub
Wozniak, Marcin
Garg, Sahil
Hassan, Mohammad Mehedi
description In this article, we propose a model of face detection in risk situations to help rescue teams speed up the search of people who might need help. The proposed lightweight convolutional neural network (CNN) architecture is designed to detect faces of people in mines, avalanches, under water, or other dangerous situations when their face might not be very visible over surrounding background. We have designed a novel light architecture cooperating with the proposed sliding window procedure. The designed model works with maximum simplicity to support mobile devices. An output from processing presents a box on face location in the screen of device. The model was trained by using Adam and tested on various images. Results show that proposed lightweight CNN detects human faces over various textures with accuracy above 99% and precision above 98% what proves the efficiency of our proposed model.
doi_str_mv 10.1109/TII.2021.3129629
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2021_3129629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9623479</ieee_id><sourcerecordid>2652700862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-73109b0baec351178b50180ae074ccc01031bb1e466af3687183fe087b5071843</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSMEEmNwR-ISiXOHnbRNe0SDsUkDJBgXLlUaXOjWLZC0TPx7UjZx8bPsz5b9GDtHGCFCfrWYzUYCBI4kijwV-QEbYB5jBJDAYciTBCMpQB6zE--XAFKBzAfsdV6_f7Rb6iMf2823bbq2thvd8Afq3J-0W-tW_N6-UcMr6_i0W-sNn2hD_IZaMj3P6w1_qv2KP9dtp_uKP2VHlW48ne11yF4mt4vxNJo_3s3G1_PIiEy1kZLh_BJKTUYmiCorE8AMNIGKjTGAILEskeI01ZVMM4WZrAgyFbiQx3LILnd7P5396si3xdJ2LnzgC5EmQgFkqQgU7CjjrPeOquLT1WvtfgqEonewCA4WvYPF3sEwcrEbqYnoHw8tGatc_gKNmWth</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652700862</pqid></control><display><type>article</type><title>Lightweight Convolutional Neural Network Model for Human Face Detection in Risk Situations</title><source>IEEE Electronic Library (IEL)</source><creator>Wieczorek, Michal ; Silka, Jakub ; Wozniak, Marcin ; Garg, Sahil ; Hassan, Mohammad Mehedi</creator><creatorcontrib>Wieczorek, Michal ; Silka, Jakub ; Wozniak, Marcin ; Garg, Sahil ; Hassan, Mohammad Mehedi</creatorcontrib><description>In this article, we propose a model of face detection in risk situations to help rescue teams speed up the search of people who might need help. The proposed lightweight convolutional neural network (CNN) architecture is designed to detect faces of people in mines, avalanches, under water, or other dangerous situations when their face might not be very visible over surrounding background. We have designed a novel light architecture cooperating with the proposed sliding window procedure. The designed model works with maximum simplicity to support mobile devices. An output from processing presents a box on face location in the screen of device. The model was trained by using Adam and tested on various images. Results show that proposed lightweight CNN detects human faces over various textures with accuracy above 99% and precision above 98% what proves the efficiency of our proposed model.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3129629</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; Convolutional neural networks ; Deep learning ; Electronic devices ; Face detection ; Face recognition ; Faces ; Informatics ; Lightweight ; lightweight convolutional neural network (CNN) ; Mobile handsets ; Neural networks</subject><ispartof>IEEE transactions on industrial informatics, 2022-07, Vol.18 (7), p.4820-4829</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-73109b0baec351178b50180ae074ccc01031bb1e466af3687183fe087b5071843</citedby><cites>FETCH-LOGICAL-c287t-73109b0baec351178b50180ae074ccc01031bb1e466af3687183fe087b5071843</cites><orcidid>0000-0001-9133-4388 ; 0000-0003-0229-608X ; 0000-0002-5319-3366 ; 0000-0002-9073-5347 ; 0000-0002-3479-3606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9623479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9623479$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wieczorek, Michal</creatorcontrib><creatorcontrib>Silka, Jakub</creatorcontrib><creatorcontrib>Wozniak, Marcin</creatorcontrib><creatorcontrib>Garg, Sahil</creatorcontrib><creatorcontrib>Hassan, Mohammad Mehedi</creatorcontrib><title>Lightweight Convolutional Neural Network Model for Human Face Detection in Risk Situations</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this article, we propose a model of face detection in risk situations to help rescue teams speed up the search of people who might need help. The proposed lightweight convolutional neural network (CNN) architecture is designed to detect faces of people in mines, avalanches, under water, or other dangerous situations when their face might not be very visible over surrounding background. We have designed a novel light architecture cooperating with the proposed sliding window procedure. The designed model works with maximum simplicity to support mobile devices. An output from processing presents a box on face location in the screen of device. The model was trained by using Adam and tested on various images. Results show that proposed lightweight CNN detects human faces over various textures with accuracy above 99% and precision above 98% what proves the efficiency of our proposed model.</description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Electronic devices</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Faces</subject><subject>Informatics</subject><subject>Lightweight</subject><subject>lightweight convolutional neural network (CNN)</subject><subject>Mobile handsets</subject><subject>Neural networks</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwzAMhSMEEmNwR-ISiXOHnbRNe0SDsUkDJBgXLlUaXOjWLZC0TPx7UjZx8bPsz5b9GDtHGCFCfrWYzUYCBI4kijwV-QEbYB5jBJDAYciTBCMpQB6zE--XAFKBzAfsdV6_f7Rb6iMf2823bbq2thvd8Afq3J-0W-tW_N6-UcMr6_i0W-sNn2hD_IZaMj3P6w1_qv2KP9dtp_uKP2VHlW48ne11yF4mt4vxNJo_3s3G1_PIiEy1kZLh_BJKTUYmiCorE8AMNIGKjTGAILEskeI01ZVMM4WZrAgyFbiQx3LILnd7P5396si3xdJ2LnzgC5EmQgFkqQgU7CjjrPeOquLT1WvtfgqEonewCA4WvYPF3sEwcrEbqYnoHw8tGatc_gKNmWth</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Wieczorek, Michal</creator><creator>Silka, Jakub</creator><creator>Wozniak, Marcin</creator><creator>Garg, Sahil</creator><creator>Hassan, Mohammad Mehedi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9133-4388</orcidid><orcidid>https://orcid.org/0000-0003-0229-608X</orcidid><orcidid>https://orcid.org/0000-0002-5319-3366</orcidid><orcidid>https://orcid.org/0000-0002-9073-5347</orcidid><orcidid>https://orcid.org/0000-0002-3479-3606</orcidid></search><sort><creationdate>20220701</creationdate><title>Lightweight Convolutional Neural Network Model for Human Face Detection in Risk Situations</title><author>Wieczorek, Michal ; Silka, Jakub ; Wozniak, Marcin ; Garg, Sahil ; Hassan, Mohammad Mehedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-73109b0baec351178b50180ae074ccc01031bb1e466af3687183fe087b5071843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Electronic devices</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Faces</topic><topic>Informatics</topic><topic>Lightweight</topic><topic>lightweight convolutional neural network (CNN)</topic><topic>Mobile handsets</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Wieczorek, Michal</creatorcontrib><creatorcontrib>Silka, Jakub</creatorcontrib><creatorcontrib>Wozniak, Marcin</creatorcontrib><creatorcontrib>Garg, Sahil</creatorcontrib><creatorcontrib>Hassan, Mohammad Mehedi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wieczorek, Michal</au><au>Silka, Jakub</au><au>Wozniak, Marcin</au><au>Garg, Sahil</au><au>Hassan, Mohammad Mehedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Convolutional Neural Network Model for Human Face Detection in Risk Situations</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>18</volume><issue>7</issue><spage>4820</spage><epage>4829</epage><pages>4820-4829</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this article, we propose a model of face detection in risk situations to help rescue teams speed up the search of people who might need help. The proposed lightweight convolutional neural network (CNN) architecture is designed to detect faces of people in mines, avalanches, under water, or other dangerous situations when their face might not be very visible over surrounding background. We have designed a novel light architecture cooperating with the proposed sliding window procedure. The designed model works with maximum simplicity to support mobile devices. An output from processing presents a box on face location in the screen of device. The model was trained by using Adam and tested on various images. Results show that proposed lightweight CNN detects human faces over various textures with accuracy above 99% and precision above 98% what proves the efficiency of our proposed model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3129629</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9133-4388</orcidid><orcidid>https://orcid.org/0000-0003-0229-608X</orcidid><orcidid>https://orcid.org/0000-0002-5319-3366</orcidid><orcidid>https://orcid.org/0000-0002-9073-5347</orcidid><orcidid>https://orcid.org/0000-0002-3479-3606</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2022-07, Vol.18 (7), p.4820-4829
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2021_3129629
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Computational modeling
Convolutional neural networks
Deep learning
Electronic devices
Face detection
Face recognition
Faces
Informatics
Lightweight
lightweight convolutional neural network (CNN)
Mobile handsets
Neural networks
title Lightweight Convolutional Neural Network Model for Human Face Detection in Risk Situations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Convolutional%20Neural%20Network%20Model%20for%20Human%20Face%20Detection%20in%20Risk%20Situations&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Wieczorek,%20Michal&rft.date=2022-07-01&rft.volume=18&rft.issue=7&rft.spage=4820&rft.epage=4829&rft.pages=4820-4829&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3129629&rft_dat=%3Cproquest_RIE%3E2652700862%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652700862&rft_id=info:pmid/&rft_ieee_id=9623479&rfr_iscdi=true