Data/Model Jointly Driven High-Quality Case Generation for Power System Dynamic Stability Assessment

For data-driven dynamic stability assessment (DSA) in power systems, learning cases collected from actual historical records appear to be more reliable than those obtained from numerical simulations with an inevitable reality gap. However, due to the scarceness of transient events in practical syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2022-08, Vol.18 (8), p.5055-5066
Hauptverfasser: Zhu, Lipeng, Hill, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5066
container_issue 8
container_start_page 5055
container_title IEEE transactions on industrial informatics
container_volume 18
creator Zhu, Lipeng
Hill, David
description For data-driven dynamic stability assessment (DSA) in power systems, learning cases collected from actual historical records appear to be more reliable than those obtained from numerical simulations with an inevitable reality gap. However, due to the scarceness of transient events in practical systems, historical case sets generally encounter the small sample size and class-imbalance problems. To tackle these challenging issues, this article proposes a novel data/model jointly driven framework to generate high-quality cases for power system DSA applications. Model-driven numerical simulations are first utilized for rough case generation, based upon which case refinement is then intelligently carried out via cycle generative adversarial network (CycleGAN) learning. In this data-driven manner, the CycleGAN is able to produce refined cases highly resembling actual historical ones. A long short-term memory-based semisupervised learning scheme is further designed to reliably label all the refined cases. Numerical tests are comprehensively carried out on the realistic Guangdong Power Grid in South China. With only a small and skewed historical case set initially provided, the proposed framework is able to generate highly realistic cases to augment the set and mitigate the class-imbalance issue. These synthetic cases further help derive a more discerning DSA model, which contributes to enhanced reliability and adaptability of online DSA in practical power grids.
doi_str_mv 10.1109/TII.2021.3123823
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2021_3123823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9594450</ieee_id><sourcerecordid>2662097090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9025ce47c904c3380d1bf63c945c0de7f59e22b666aceda7426f20386cf2c6413</originalsourceid><addsrcrecordid>eNo9kMFPwjAUhxejiYjeTbw08Tx4bbeOHgkoYDBqwPNSujct2VZsi2b_vUOIp_cOv-_38r4ouqUwoBTkcL1YDBgwOuCU8RHjZ1GPyoTGACmcd3ua0pgz4JfRlfdbAJ4Bl72omKqghs-2wIo8WdOEqiVTZ76xIXPz8Rm_7VVlQksmyiOZYYNOBWMbUlpHXu0POrJqfcCaTNtG1UaTVVAb84eMvUfva2zCdXRRqsrjzWn2o_fHh_VkHi9fZovJeBlrJmmIJbBUY5JpCYnmfAQF3ZSCa5mkGgrMylQiYxshhNJYqCxhouw-GgldMi0SyvvR_bF35-zXHn3It3bvmu5kzoRgIDOQ0KXgmNLOeu-wzHfO1Mq1OYX84DLvXOYHl_nJZYfcHRGDiP9xmcokSYH_Ao1jb5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662097090</pqid></control><display><type>article</type><title>Data/Model Jointly Driven High-Quality Case Generation for Power System Dynamic Stability Assessment</title><source>IEEE Xplore (Online service)</source><creator>Zhu, Lipeng ; Hill, David</creator><creatorcontrib>Zhu, Lipeng ; Hill, David</creatorcontrib><description>For data-driven dynamic stability assessment (DSA) in power systems, learning cases collected from actual historical records appear to be more reliable than those obtained from numerical simulations with an inevitable reality gap. However, due to the scarceness of transient events in practical systems, historical case sets generally encounter the small sample size and class-imbalance problems. To tackle these challenging issues, this article proposes a novel data/model jointly driven framework to generate high-quality cases for power system DSA applications. Model-driven numerical simulations are first utilized for rough case generation, based upon which case refinement is then intelligently carried out via cycle generative adversarial network (CycleGAN) learning. In this data-driven manner, the CycleGAN is able to produce refined cases highly resembling actual historical ones. A long short-term memory-based semisupervised learning scheme is further designed to reliably label all the refined cases. Numerical tests are comprehensively carried out on the realistic Guangdong Power Grid in South China. With only a small and skewed historical case set initially provided, the proposed framework is able to generate highly realistic cases to augment the set and mitigate the class-imbalance issue. These synthetic cases further help derive a more discerning DSA model, which contributes to enhanced reliability and adaptability of online DSA in practical power grids.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3123823</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Case generation ; deep neural networks (DNNs) ; Dynamic stability ; dynamic stability assessment (DSA) ; Generative adversarial networks ; generative adversarial networks (GANs) ; Mathematical models ; Numerical stability ; Power grids ; Power system dynamics ; Power system reliability ; Power system stability ; Reliability ; Semi-supervised learning ; Stability analysis ; synchrophasor measurements ; time series (TS)</subject><ispartof>IEEE transactions on industrial informatics, 2022-08, Vol.18 (8), p.5055-5066</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9025ce47c904c3380d1bf63c945c0de7f59e22b666aceda7426f20386cf2c6413</citedby><cites>FETCH-LOGICAL-c291t-9025ce47c904c3380d1bf63c945c0de7f59e22b666aceda7426f20386cf2c6413</cites><orcidid>0000-0001-6051-9064 ; 0000-0003-4036-0839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9594450$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9594450$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Lipeng</creatorcontrib><creatorcontrib>Hill, David</creatorcontrib><title>Data/Model Jointly Driven High-Quality Case Generation for Power System Dynamic Stability Assessment</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>For data-driven dynamic stability assessment (DSA) in power systems, learning cases collected from actual historical records appear to be more reliable than those obtained from numerical simulations with an inevitable reality gap. However, due to the scarceness of transient events in practical systems, historical case sets generally encounter the small sample size and class-imbalance problems. To tackle these challenging issues, this article proposes a novel data/model jointly driven framework to generate high-quality cases for power system DSA applications. Model-driven numerical simulations are first utilized for rough case generation, based upon which case refinement is then intelligently carried out via cycle generative adversarial network (CycleGAN) learning. In this data-driven manner, the CycleGAN is able to produce refined cases highly resembling actual historical ones. A long short-term memory-based semisupervised learning scheme is further designed to reliably label all the refined cases. Numerical tests are comprehensively carried out on the realistic Guangdong Power Grid in South China. With only a small and skewed historical case set initially provided, the proposed framework is able to generate highly realistic cases to augment the set and mitigate the class-imbalance issue. These synthetic cases further help derive a more discerning DSA model, which contributes to enhanced reliability and adaptability of online DSA in practical power grids.</description><subject>Case generation</subject><subject>deep neural networks (DNNs)</subject><subject>Dynamic stability</subject><subject>dynamic stability assessment (DSA)</subject><subject>Generative adversarial networks</subject><subject>generative adversarial networks (GANs)</subject><subject>Mathematical models</subject><subject>Numerical stability</subject><subject>Power grids</subject><subject>Power system dynamics</subject><subject>Power system reliability</subject><subject>Power system stability</subject><subject>Reliability</subject><subject>Semi-supervised learning</subject><subject>Stability analysis</subject><subject>synchrophasor measurements</subject><subject>time series (TS)</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFPwjAUhxejiYjeTbw08Tx4bbeOHgkoYDBqwPNSujct2VZsi2b_vUOIp_cOv-_38r4ouqUwoBTkcL1YDBgwOuCU8RHjZ1GPyoTGACmcd3ua0pgz4JfRlfdbAJ4Bl72omKqghs-2wIo8WdOEqiVTZ76xIXPz8Rm_7VVlQksmyiOZYYNOBWMbUlpHXu0POrJqfcCaTNtG1UaTVVAb84eMvUfva2zCdXRRqsrjzWn2o_fHh_VkHi9fZovJeBlrJmmIJbBUY5JpCYnmfAQF3ZSCa5mkGgrMylQiYxshhNJYqCxhouw-GgldMi0SyvvR_bF35-zXHn3It3bvmu5kzoRgIDOQ0KXgmNLOeu-wzHfO1Mq1OYX84DLvXOYHl_nJZYfcHRGDiP9xmcokSYH_Ao1jb5Y</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Zhu, Lipeng</creator><creator>Hill, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6051-9064</orcidid><orcidid>https://orcid.org/0000-0003-4036-0839</orcidid></search><sort><creationdate>20220801</creationdate><title>Data/Model Jointly Driven High-Quality Case Generation for Power System Dynamic Stability Assessment</title><author>Zhu, Lipeng ; Hill, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9025ce47c904c3380d1bf63c945c0de7f59e22b666aceda7426f20386cf2c6413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Case generation</topic><topic>deep neural networks (DNNs)</topic><topic>Dynamic stability</topic><topic>dynamic stability assessment (DSA)</topic><topic>Generative adversarial networks</topic><topic>generative adversarial networks (GANs)</topic><topic>Mathematical models</topic><topic>Numerical stability</topic><topic>Power grids</topic><topic>Power system dynamics</topic><topic>Power system reliability</topic><topic>Power system stability</topic><topic>Reliability</topic><topic>Semi-supervised learning</topic><topic>Stability analysis</topic><topic>synchrophasor measurements</topic><topic>time series (TS)</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Lipeng</creatorcontrib><creatorcontrib>Hill, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Lipeng</au><au>Hill, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data/Model Jointly Driven High-Quality Case Generation for Power System Dynamic Stability Assessment</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>18</volume><issue>8</issue><spage>5055</spage><epage>5066</epage><pages>5055-5066</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>For data-driven dynamic stability assessment (DSA) in power systems, learning cases collected from actual historical records appear to be more reliable than those obtained from numerical simulations with an inevitable reality gap. However, due to the scarceness of transient events in practical systems, historical case sets generally encounter the small sample size and class-imbalance problems. To tackle these challenging issues, this article proposes a novel data/model jointly driven framework to generate high-quality cases for power system DSA applications. Model-driven numerical simulations are first utilized for rough case generation, based upon which case refinement is then intelligently carried out via cycle generative adversarial network (CycleGAN) learning. In this data-driven manner, the CycleGAN is able to produce refined cases highly resembling actual historical ones. A long short-term memory-based semisupervised learning scheme is further designed to reliably label all the refined cases. Numerical tests are comprehensively carried out on the realistic Guangdong Power Grid in South China. With only a small and skewed historical case set initially provided, the proposed framework is able to generate highly realistic cases to augment the set and mitigate the class-imbalance issue. These synthetic cases further help derive a more discerning DSA model, which contributes to enhanced reliability and adaptability of online DSA in practical power grids.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3123823</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6051-9064</orcidid><orcidid>https://orcid.org/0000-0003-4036-0839</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2022-08, Vol.18 (8), p.5055-5066
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2021_3123823
source IEEE Xplore (Online service)
subjects Case generation
deep neural networks (DNNs)
Dynamic stability
dynamic stability assessment (DSA)
Generative adversarial networks
generative adversarial networks (GANs)
Mathematical models
Numerical stability
Power grids
Power system dynamics
Power system reliability
Power system stability
Reliability
Semi-supervised learning
Stability analysis
synchrophasor measurements
time series (TS)
title Data/Model Jointly Driven High-Quality Case Generation for Power System Dynamic Stability Assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data/Model%20Jointly%20Driven%20High-Quality%20Case%20Generation%20for%20Power%20System%20Dynamic%20Stability%20Assessment&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zhu,%20Lipeng&rft.date=2022-08-01&rft.volume=18&rft.issue=8&rft.spage=5055&rft.epage=5066&rft.pages=5055-5066&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3123823&rft_dat=%3Cproquest_RIE%3E2662097090%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662097090&rft_id=info:pmid/&rft_ieee_id=9594450&rfr_iscdi=true