An Intelligent and Trust UAV-Assisted Code Dissemination 5G System for Industrial Internet-of-Things
A large number of devices with communication and sensing capabilities are connected to the 5G network and facilitate distributed industrial Internet of Things (IIoT) applications. Those devices can update their program code by using software-defined technologies and upgrade functions without hardwar...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2022-04, Vol.18 (4), p.2877-2889 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2889 |
---|---|
container_issue | 4 |
container_start_page | 2877 |
container_title | IEEE transactions on industrial informatics |
container_volume | 18 |
creator | Liang, Jingpu Liu, Wei Xiong, Neal N. Liu, Anfeng Zhang, Shaobo |
description | A large number of devices with communication and sensing capabilities are connected to the 5G network and facilitate distributed industrial Internet of Things (IIoT) applications. Those devices can update their program code by using software-defined technologies and upgrade functions without hardware replacement, thus, greatly facilitating the development of IIoT applications. Disseminating code safely to these devices is a pivotal issue. However, the existing methods rarely consider whether the code received by devices is integrated. Therefore, an unmanned aerial vehicle (UAV) assisted trustworthy code dissemination (UTCD) framework in 5G-enabled intelligent IIoT systems is proposed to select credible mobile vehicles (MVs) to disseminate code with opportunistic routing style. In the UTCD framework, a verifiable trust evaluation scheme is proposed to identify the trust of the MVs by sending the UAV to collect the code wait to be verified (CWV) directly from the selected devices (bedrock devices) as evidence. This scheme is a fundamental change from the previous passive, indirect and unverifiable trust evaluation schemes. In UTCD, a bedrock devices selection scheme is presented by selecting as few bedrock devices as possible to collect as much the CWV as possible with the minimum cost. After that, based on the CWV, which is collected from bedrock devices, a complete trust evaluation scheme is proposed to obtain the trust of MVs. Furthermore, a UAV trajectory optimization algorithm is proposed to obtain as much CWV as possible within the limited conditions of UAV. Finally, comprehensive experiments conduct on a real-life dataset demonstrate that the proposed scheme outperforms the existing schemes in terms of the efficiency and security of code dissemination. |
doi_str_mv | 10.1109/TII.2021.3110734 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2021_3110734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9531431</ieee_id><sourcerecordid>2616720329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b9fb5c9b223d8dee179a301f85b0f19ae1b38b8e496b0b8d59b7acbfa14ba1033</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhSMEEqWwI7FYYk7xxUkTj1GBEqkSAylrZMfn4ip1iu0O_HtcWjHdne69d7ovSe6BzgAof2qbZpbRDGYsjiXLL5IJ8BxSSgt6GfuigJRllF0nN95vKWUlZXySqNqSxgYcBrNBG4iwirTu4ANZ159p7b3xARVZjArJs_Eed8aKYEZLiiX5-InLHdGjixkqmpwRw1-csxjSUaftl7Ebf5tcaTF4vDvXabJ-fWkXb-nqfdks6lXaZxxCKrmWRc9lljFVKUQouWAUdFVIqoELBMkqWWHO55LKShVclqKXWkAuBVDGpsnjKXfvxu8D-tBtx4Oz8WSXzWFexvczHlX0pOrd6L1D3e2d2Qn30wHtjiy7yLI7suzOLKPl4WQxiPgv5wWDnAH7BatJcA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616720329</pqid></control><display><type>article</type><title>An Intelligent and Trust UAV-Assisted Code Dissemination 5G System for Industrial Internet-of-Things</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Jingpu ; Liu, Wei ; Xiong, Neal N. ; Liu, Anfeng ; Zhang, Shaobo</creator><creatorcontrib>Liang, Jingpu ; Liu, Wei ; Xiong, Neal N. ; Liu, Anfeng ; Zhang, Shaobo</creatorcontrib><description>A large number of devices with communication and sensing capabilities are connected to the 5G network and facilitate distributed industrial Internet of Things (IIoT) applications. Those devices can update their program code by using software-defined technologies and upgrade functions without hardware replacement, thus, greatly facilitating the development of IIoT applications. Disseminating code safely to these devices is a pivotal issue. However, the existing methods rarely consider whether the code received by devices is integrated. Therefore, an unmanned aerial vehicle (UAV) assisted trustworthy code dissemination (UTCD) framework in 5G-enabled intelligent IIoT systems is proposed to select credible mobile vehicles (MVs) to disseminate code with opportunistic routing style. In the UTCD framework, a verifiable trust evaluation scheme is proposed to identify the trust of the MVs by sending the UAV to collect the code wait to be verified (CWV) directly from the selected devices (bedrock devices) as evidence. This scheme is a fundamental change from the previous passive, indirect and unverifiable trust evaluation schemes. In UTCD, a bedrock devices selection scheme is presented by selecting as few bedrock devices as possible to collect as much the CWV as possible with the minimum cost. After that, based on the CWV, which is collected from bedrock devices, a complete trust evaluation scheme is proposed to obtain the trust of MVs. Furthermore, a UAV trajectory optimization algorithm is proposed to obtain as much CWV as possible within the limited conditions of UAV. Finally, comprehensive experiments conduct on a real-life dataset demonstrate that the proposed scheme outperforms the existing schemes in terms of the efficiency and security of code dissemination.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3110734</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; 5G-enabled intelligent applications ; Algorithms ; Bedrock ; code dissemination ; Codes ; Costs ; Industrial applications ; Industrial Internet of Things ; industrial Internet of things (IIoT) ; Informatics ; Internet of Things ; Minimum cost ; Routing (telecommunications) ; Security ; Trajectory optimization ; Trust ; trust evaluation ; Trustworthiness ; Unmanned aerial vehicles ; Upgrading</subject><ispartof>IEEE transactions on industrial informatics, 2022-04, Vol.18 (4), p.2877-2889</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b9fb5c9b223d8dee179a301f85b0f19ae1b38b8e496b0b8d59b7acbfa14ba1033</citedby><cites>FETCH-LOGICAL-c291t-b9fb5c9b223d8dee179a301f85b0f19ae1b38b8e496b0b8d59b7acbfa14ba1033</cites><orcidid>0000-0001-5190-4761 ; 0000-0001-5615-3098 ; 0000-0001-7980-9651 ; 0000-0002-4473-0537 ; 0000-0002-0394-4635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9531431$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9531431$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Jingpu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Xiong, Neal N.</creatorcontrib><creatorcontrib>Liu, Anfeng</creatorcontrib><creatorcontrib>Zhang, Shaobo</creatorcontrib><title>An Intelligent and Trust UAV-Assisted Code Dissemination 5G System for Industrial Internet-of-Things</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>A large number of devices with communication and sensing capabilities are connected to the 5G network and facilitate distributed industrial Internet of Things (IIoT) applications. Those devices can update their program code by using software-defined technologies and upgrade functions without hardware replacement, thus, greatly facilitating the development of IIoT applications. Disseminating code safely to these devices is a pivotal issue. However, the existing methods rarely consider whether the code received by devices is integrated. Therefore, an unmanned aerial vehicle (UAV) assisted trustworthy code dissemination (UTCD) framework in 5G-enabled intelligent IIoT systems is proposed to select credible mobile vehicles (MVs) to disseminate code with opportunistic routing style. In the UTCD framework, a verifiable trust evaluation scheme is proposed to identify the trust of the MVs by sending the UAV to collect the code wait to be verified (CWV) directly from the selected devices (bedrock devices) as evidence. This scheme is a fundamental change from the previous passive, indirect and unverifiable trust evaluation schemes. In UTCD, a bedrock devices selection scheme is presented by selecting as few bedrock devices as possible to collect as much the CWV as possible with the minimum cost. After that, based on the CWV, which is collected from bedrock devices, a complete trust evaluation scheme is proposed to obtain the trust of MVs. Furthermore, a UAV trajectory optimization algorithm is proposed to obtain as much CWV as possible within the limited conditions of UAV. Finally, comprehensive experiments conduct on a real-life dataset demonstrate that the proposed scheme outperforms the existing schemes in terms of the efficiency and security of code dissemination.</description><subject>5G mobile communication</subject><subject>5G-enabled intelligent applications</subject><subject>Algorithms</subject><subject>Bedrock</subject><subject>code dissemination</subject><subject>Codes</subject><subject>Costs</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>industrial Internet of things (IIoT)</subject><subject>Informatics</subject><subject>Internet of Things</subject><subject>Minimum cost</subject><subject>Routing (telecommunications)</subject><subject>Security</subject><subject>Trajectory optimization</subject><subject>Trust</subject><subject>trust evaluation</subject><subject>Trustworthiness</subject><subject>Unmanned aerial vehicles</subject><subject>Upgrading</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQhSMEEqWwI7FYYk7xxUkTj1GBEqkSAylrZMfn4ip1iu0O_HtcWjHdne69d7ovSe6BzgAof2qbZpbRDGYsjiXLL5IJ8BxSSgt6GfuigJRllF0nN95vKWUlZXySqNqSxgYcBrNBG4iwirTu4ANZ159p7b3xARVZjArJs_Eed8aKYEZLiiX5-InLHdGjixkqmpwRw1-csxjSUaftl7Ebf5tcaTF4vDvXabJ-fWkXb-nqfdks6lXaZxxCKrmWRc9lljFVKUQouWAUdFVIqoELBMkqWWHO55LKShVclqKXWkAuBVDGpsnjKXfvxu8D-tBtx4Oz8WSXzWFexvczHlX0pOrd6L1D3e2d2Qn30wHtjiy7yLI7suzOLKPl4WQxiPgv5wWDnAH7BatJcA0</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Liang, Jingpu</creator><creator>Liu, Wei</creator><creator>Xiong, Neal N.</creator><creator>Liu, Anfeng</creator><creator>Zhang, Shaobo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5190-4761</orcidid><orcidid>https://orcid.org/0000-0001-5615-3098</orcidid><orcidid>https://orcid.org/0000-0001-7980-9651</orcidid><orcidid>https://orcid.org/0000-0002-4473-0537</orcidid><orcidid>https://orcid.org/0000-0002-0394-4635</orcidid></search><sort><creationdate>20220401</creationdate><title>An Intelligent and Trust UAV-Assisted Code Dissemination 5G System for Industrial Internet-of-Things</title><author>Liang, Jingpu ; Liu, Wei ; Xiong, Neal N. ; Liu, Anfeng ; Zhang, Shaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b9fb5c9b223d8dee179a301f85b0f19ae1b38b8e496b0b8d59b7acbfa14ba1033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>5G mobile communication</topic><topic>5G-enabled intelligent applications</topic><topic>Algorithms</topic><topic>Bedrock</topic><topic>code dissemination</topic><topic>Codes</topic><topic>Costs</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>industrial Internet of things (IIoT)</topic><topic>Informatics</topic><topic>Internet of Things</topic><topic>Minimum cost</topic><topic>Routing (telecommunications)</topic><topic>Security</topic><topic>Trajectory optimization</topic><topic>Trust</topic><topic>trust evaluation</topic><topic>Trustworthiness</topic><topic>Unmanned aerial vehicles</topic><topic>Upgrading</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Jingpu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Xiong, Neal N.</creatorcontrib><creatorcontrib>Liu, Anfeng</creatorcontrib><creatorcontrib>Zhang, Shaobo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Jingpu</au><au>Liu, Wei</au><au>Xiong, Neal N.</au><au>Liu, Anfeng</au><au>Zhang, Shaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Intelligent and Trust UAV-Assisted Code Dissemination 5G System for Industrial Internet-of-Things</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>18</volume><issue>4</issue><spage>2877</spage><epage>2889</epage><pages>2877-2889</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>A large number of devices with communication and sensing capabilities are connected to the 5G network and facilitate distributed industrial Internet of Things (IIoT) applications. Those devices can update their program code by using software-defined technologies and upgrade functions without hardware replacement, thus, greatly facilitating the development of IIoT applications. Disseminating code safely to these devices is a pivotal issue. However, the existing methods rarely consider whether the code received by devices is integrated. Therefore, an unmanned aerial vehicle (UAV) assisted trustworthy code dissemination (UTCD) framework in 5G-enabled intelligent IIoT systems is proposed to select credible mobile vehicles (MVs) to disseminate code with opportunistic routing style. In the UTCD framework, a verifiable trust evaluation scheme is proposed to identify the trust of the MVs by sending the UAV to collect the code wait to be verified (CWV) directly from the selected devices (bedrock devices) as evidence. This scheme is a fundamental change from the previous passive, indirect and unverifiable trust evaluation schemes. In UTCD, a bedrock devices selection scheme is presented by selecting as few bedrock devices as possible to collect as much the CWV as possible with the minimum cost. After that, based on the CWV, which is collected from bedrock devices, a complete trust evaluation scheme is proposed to obtain the trust of MVs. Furthermore, a UAV trajectory optimization algorithm is proposed to obtain as much CWV as possible within the limited conditions of UAV. Finally, comprehensive experiments conduct on a real-life dataset demonstrate that the proposed scheme outperforms the existing schemes in terms of the efficiency and security of code dissemination.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3110734</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5190-4761</orcidid><orcidid>https://orcid.org/0000-0001-5615-3098</orcidid><orcidid>https://orcid.org/0000-0001-7980-9651</orcidid><orcidid>https://orcid.org/0000-0002-4473-0537</orcidid><orcidid>https://orcid.org/0000-0002-0394-4635</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2022-04, Vol.18 (4), p.2877-2889 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2021_3110734 |
source | IEEE Electronic Library (IEL) |
subjects | 5G mobile communication 5G-enabled intelligent applications Algorithms Bedrock code dissemination Codes Costs Industrial applications Industrial Internet of Things industrial Internet of things (IIoT) Informatics Internet of Things Minimum cost Routing (telecommunications) Security Trajectory optimization Trust trust evaluation Trustworthiness Unmanned aerial vehicles Upgrading |
title | An Intelligent and Trust UAV-Assisted Code Dissemination 5G System for Industrial Internet-of-Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Intelligent%20and%20Trust%20UAV-Assisted%20Code%20Dissemination%205G%20System%20for%20Industrial%20Internet-of-Things&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liang,%20Jingpu&rft.date=2022-04-01&rft.volume=18&rft.issue=4&rft.spage=2877&rft.epage=2889&rft.pages=2877-2889&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3110734&rft_dat=%3Cproquest_RIE%3E2616720329%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616720329&rft_id=info:pmid/&rft_ieee_id=9531431&rfr_iscdi=true |