Optimal Sizing and Efficient Routing of Electric Vehicles for a Vehicle-on-Demand System
Due to the steep rise in global population, urbanization, and industrialization, most of the cities in the world today are witnessing increased carbon footprints and reduced per capita space. In such a scenario, vehicle sharing and carpooling systems, specifically with electric vehicles (EV), can si...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2022-03, Vol.18 (3), p.1489-1499 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1499 |
---|---|
container_issue | 3 |
container_start_page | 1489 |
container_title | IEEE transactions on industrial informatics |
container_volume | 18 |
creator | Saha, Pranay Kumar Chakraborty, Nilotpal Mondal, Arijit Mondal, Samrat |
description | Due to the steep rise in global population, urbanization, and industrialization, most of the cities in the world today are witnessing increased carbon footprints and reduced per capita space. In such a scenario, vehicle sharing and carpooling systems, specifically with electric vehicles (EV), can significantly help due to the reduced cost of ownership, maintenance, and parking space. In this article, we study the challenging problem of optimal sizing and efficient routing for an electric vehicle-on-demand system. Users demand EVs at the pooling stations at different time instances with individual deadlines to reach the destinations. The objective is to fulfill all the demands respecting the deadlines with minimum investment, which essentially translates to minimizing the total number of EVs. We define the problem formally using mixed-integer linear programming formulation and propose a set of intelligent and efficient heuristic algorithms to solve it efficiently. The proposed algorithms' performances are tested and validated in a simulated environment on a reasonable size city network with many EV demands. The results obtained show that the proposed heuristic algorithms are competent by reducing 200-360 EVs per day on a network of 282 charging ports, indicating their scalability to be implemented in real-world scenarios. |
doi_str_mv | 10.1109/TII.2021.3091597 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2021_3091597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9462468</ieee_id><sourcerecordid>2607881786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d25e5841e07e9dfefe44b9be24b4ebebce13fa3c86bb6cefa9800fdac3f0bd903</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dSbxzyylFq1IBRsFXdhkrnRlOlMTaaL-uudodXVfXDOPdyPkGsGE8ZA3a3m8wkHziYCFEtVfkJGTEmWAKRw2vdpyhLBQZyTixjXACIHoUbkY7Ht_Kas6dL_-OaTlk1FZ85567Hp6Gu764Zt6-isRtsFb-k7fnlbY6SuDbT8G5O2SR5wM9iX-9jh5pKcubKOeHWsY_L2OFtNn5OXxdN8ev-SWK5Yl1Q8xbSQDCFHVTl0KKVRBrk0Eg0ai0y4UtgiMyaz6EpVALiqtMKBqRSIMbk93N2G9nuHsdPrdheaPlLzDPKiYHmR9So4qGxoYwzo9Db0b4e9ZqAHfrrnpwd--sivt9wcLB4R_-VKZlxmhfgFeQFs_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607881786</pqid></control><display><type>article</type><title>Optimal Sizing and Efficient Routing of Electric Vehicles for a Vehicle-on-Demand System</title><source>IEEE Electronic Library (IEL)</source><creator>Saha, Pranay Kumar ; Chakraborty, Nilotpal ; Mondal, Arijit ; Mondal, Samrat</creator><creatorcontrib>Saha, Pranay Kumar ; Chakraborty, Nilotpal ; Mondal, Arijit ; Mondal, Samrat</creatorcontrib><description>Due to the steep rise in global population, urbanization, and industrialization, most of the cities in the world today are witnessing increased carbon footprints and reduced per capita space. In such a scenario, vehicle sharing and carpooling systems, specifically with electric vehicles (EV), can significantly help due to the reduced cost of ownership, maintenance, and parking space. In this article, we study the challenging problem of optimal sizing and efficient routing for an electric vehicle-on-demand system. Users demand EVs at the pooling stations at different time instances with individual deadlines to reach the destinations. The objective is to fulfill all the demands respecting the deadlines with minimum investment, which essentially translates to minimizing the total number of EVs. We define the problem formally using mixed-integer linear programming formulation and propose a set of intelligent and efficient heuristic algorithms to solve it efficiently. The proposed algorithms' performances are tested and validated in a simulated environment on a reasonable size city network with many EV demands. The results obtained show that the proposed heuristic algorithms are competent by reducing 200-360 EVs per day on a network of 282 charging ports, indicating their scalability to be implemented in real-world scenarios.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3091597</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Batteries ; Bicycles ; Car pools ; Charging stations ; Electric vehicles ; Electric vehicles (EVs) ; Heuristic methods ; Informatics ; Integer programming ; Linear programming ; Mixed integer ; ride sharing ; Roads ; Route planning ; Routing ; Sizing ; Urban areas ; Urbanization ; vehicle on demand</subject><ispartof>IEEE transactions on industrial informatics, 2022-03, Vol.18 (3), p.1489-1499</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d25e5841e07e9dfefe44b9be24b4ebebce13fa3c86bb6cefa9800fdac3f0bd903</citedby><cites>FETCH-LOGICAL-c291t-d25e5841e07e9dfefe44b9be24b4ebebce13fa3c86bb6cefa9800fdac3f0bd903</cites><orcidid>0000-0002-4873-0964 ; 0000-0003-4735-5098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9462468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9462468$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saha, Pranay Kumar</creatorcontrib><creatorcontrib>Chakraborty, Nilotpal</creatorcontrib><creatorcontrib>Mondal, Arijit</creatorcontrib><creatorcontrib>Mondal, Samrat</creatorcontrib><title>Optimal Sizing and Efficient Routing of Electric Vehicles for a Vehicle-on-Demand System</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Due to the steep rise in global population, urbanization, and industrialization, most of the cities in the world today are witnessing increased carbon footprints and reduced per capita space. In such a scenario, vehicle sharing and carpooling systems, specifically with electric vehicles (EV), can significantly help due to the reduced cost of ownership, maintenance, and parking space. In this article, we study the challenging problem of optimal sizing and efficient routing for an electric vehicle-on-demand system. Users demand EVs at the pooling stations at different time instances with individual deadlines to reach the destinations. The objective is to fulfill all the demands respecting the deadlines with minimum investment, which essentially translates to minimizing the total number of EVs. We define the problem formally using mixed-integer linear programming formulation and propose a set of intelligent and efficient heuristic algorithms to solve it efficiently. The proposed algorithms' performances are tested and validated in a simulated environment on a reasonable size city network with many EV demands. The results obtained show that the proposed heuristic algorithms are competent by reducing 200-360 EVs per day on a network of 282 charging ports, indicating their scalability to be implemented in real-world scenarios.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Bicycles</subject><subject>Car pools</subject><subject>Charging stations</subject><subject>Electric vehicles</subject><subject>Electric vehicles (EVs)</subject><subject>Heuristic methods</subject><subject>Informatics</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mixed integer</subject><subject>ride sharing</subject><subject>Roads</subject><subject>Route planning</subject><subject>Routing</subject><subject>Sizing</subject><subject>Urban areas</subject><subject>Urbanization</subject><subject>vehicle on demand</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dSbxzyylFq1IBRsFXdhkrnRlOlMTaaL-uudodXVfXDOPdyPkGsGE8ZA3a3m8wkHziYCFEtVfkJGTEmWAKRw2vdpyhLBQZyTixjXACIHoUbkY7Ht_Kas6dL_-OaTlk1FZ85567Hp6Gu764Zt6-isRtsFb-k7fnlbY6SuDbT8G5O2SR5wM9iX-9jh5pKcubKOeHWsY_L2OFtNn5OXxdN8ev-SWK5Yl1Q8xbSQDCFHVTl0KKVRBrk0Eg0ai0y4UtgiMyaz6EpVALiqtMKBqRSIMbk93N2G9nuHsdPrdheaPlLzDPKiYHmR9So4qGxoYwzo9Db0b4e9ZqAHfrrnpwd--sivt9wcLB4R_-VKZlxmhfgFeQFs_A</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Saha, Pranay Kumar</creator><creator>Chakraborty, Nilotpal</creator><creator>Mondal, Arijit</creator><creator>Mondal, Samrat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4873-0964</orcidid><orcidid>https://orcid.org/0000-0003-4735-5098</orcidid></search><sort><creationdate>20220301</creationdate><title>Optimal Sizing and Efficient Routing of Electric Vehicles for a Vehicle-on-Demand System</title><author>Saha, Pranay Kumar ; Chakraborty, Nilotpal ; Mondal, Arijit ; Mondal, Samrat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d25e5841e07e9dfefe44b9be24b4ebebce13fa3c86bb6cefa9800fdac3f0bd903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Bicycles</topic><topic>Car pools</topic><topic>Charging stations</topic><topic>Electric vehicles</topic><topic>Electric vehicles (EVs)</topic><topic>Heuristic methods</topic><topic>Informatics</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mixed integer</topic><topic>ride sharing</topic><topic>Roads</topic><topic>Route planning</topic><topic>Routing</topic><topic>Sizing</topic><topic>Urban areas</topic><topic>Urbanization</topic><topic>vehicle on demand</topic><toplevel>online_resources</toplevel><creatorcontrib>Saha, Pranay Kumar</creatorcontrib><creatorcontrib>Chakraborty, Nilotpal</creatorcontrib><creatorcontrib>Mondal, Arijit</creatorcontrib><creatorcontrib>Mondal, Samrat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saha, Pranay Kumar</au><au>Chakraborty, Nilotpal</au><au>Mondal, Arijit</au><au>Mondal, Samrat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Sizing and Efficient Routing of Electric Vehicles for a Vehicle-on-Demand System</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>18</volume><issue>3</issue><spage>1489</spage><epage>1499</epage><pages>1489-1499</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Due to the steep rise in global population, urbanization, and industrialization, most of the cities in the world today are witnessing increased carbon footprints and reduced per capita space. In such a scenario, vehicle sharing and carpooling systems, specifically with electric vehicles (EV), can significantly help due to the reduced cost of ownership, maintenance, and parking space. In this article, we study the challenging problem of optimal sizing and efficient routing for an electric vehicle-on-demand system. Users demand EVs at the pooling stations at different time instances with individual deadlines to reach the destinations. The objective is to fulfill all the demands respecting the deadlines with minimum investment, which essentially translates to minimizing the total number of EVs. We define the problem formally using mixed-integer linear programming formulation and propose a set of intelligent and efficient heuristic algorithms to solve it efficiently. The proposed algorithms' performances are tested and validated in a simulated environment on a reasonable size city network with many EV demands. The results obtained show that the proposed heuristic algorithms are competent by reducing 200-360 EVs per day on a network of 282 charging ports, indicating their scalability to be implemented in real-world scenarios.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3091597</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4873-0964</orcidid><orcidid>https://orcid.org/0000-0003-4735-5098</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2022-03, Vol.18 (3), p.1489-1499 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2021_3091597 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Batteries Bicycles Car pools Charging stations Electric vehicles Electric vehicles (EVs) Heuristic methods Informatics Integer programming Linear programming Mixed integer ride sharing Roads Route planning Routing Sizing Urban areas Urbanization vehicle on demand |
title | Optimal Sizing and Efficient Routing of Electric Vehicles for a Vehicle-on-Demand System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Sizing%20and%20Efficient%20Routing%20of%20Electric%20Vehicles%20for%20a%20Vehicle-on-Demand%20System&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Saha,%20Pranay%20Kumar&rft.date=2022-03-01&rft.volume=18&rft.issue=3&rft.spage=1489&rft.epage=1499&rft.pages=1489-1499&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3091597&rft_dat=%3Cproquest_RIE%3E2607881786%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607881786&rft_id=info:pmid/&rft_ieee_id=9462468&rfr_iscdi=true |