Torque and Inductances Estimation for Finite Model Predictive Control of Highly Utilized Permanent Magnet Synchronous Motors

For many permanent magnet synchronous motor (PMSM) drive applications (e.g., traction or automation), precise torque control is desired. Classically, this is based on extensive offline motor identification, e.g., by direct mapping of torque-flux-current look-up tables. In contrast, this article prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2021-12, Vol.17 (12), p.8080-8091
Hauptverfasser: Brosch, Anian, Wallscheid, Oliver, Bocker, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8091
container_issue 12
container_start_page 8080
container_title IEEE transactions on industrial informatics
container_volume 17
creator Brosch, Anian
Wallscheid, Oliver
Bocker, Joachim
description For many permanent magnet synchronous motor (PMSM) drive applications (e.g., traction or automation), precise torque control is desired. Classically, this is based on extensive offline motor identification, e.g., by direct mapping of torque-flux-current look-up tables. In contrast, this article proposes a torque estimation method based on online differential inductances identification in combination with a data-driven finite-control-set (FCS) model predictive current control (MPCC). This scheme does not require offline identification or expert motor design knowledge. The required flux maps are determined by integrating the differential inductances in the left i_{\mathrm{d}}-i_{\mathrm{q}} half-plane. By considering varying differential inductances, the proposed method is ideally suited for highly utilized PMSM with significant (cross-) saturation effects where estimation models with constant inductances fail. For the identification of the differential inductances, the system excitation, based on the FCS-MPCC working principle, is utilized. Consequently, no additional signal injection is required and the estimation scheme is applicable in the entire speed range. With this method, an open-loop torque control can be realized without knowledge of exact motor parameters except the permanent magnet flux linkage as a datasheet parameter. Extensive experimental investigations on a highly utilized PMSM in the entire speed range including standstill prove the performance of the proposed approach.
doi_str_mv 10.1109/TII.2021.3060469
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2021_3060469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9359525</ieee_id><sourcerecordid>2565240981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a27ae54ccc1a1eb265577b4758cf03ff4340189d896caa5f40e3cc1869180d773</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRhdRsFbvgpeA562TZLO7OUqptmCxYHte0uxsG1mTmqRCxR9vpMXTzOF93zAvy24pjCgF-bCczUYMGB1xKKEo5Vk2oLKgOYCA87QLQXPOgF9mVyG8A_AKuBxkP0vnP_dIlG3JzLZ7HZXVGMgkRPOhonGWdM6TJ2NNRDJ3LfZk4bE1OpovJGNno3c9cR2Zms22P5BVNL35xpYs0H8oizaSudpYjOTtYPXWO-v2IRVF58N1dtGpPuDNaQ6z1dNkOZ7mL6_Ps_HjS66ZpDFXrFIoCq01VRTXrBSiqtZFJWrdAe-6ghdAa9nWstRKia4A5ImtS0lraKuKD7P7Y-_Ou_RsiM2723ubTjZMlIIVIGuaKDhS2rsQPHbNzicH_tBQaP4cN8lx8-e4OTlOkbtjxCDiPy65kIIJ_gtIOXlB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565240981</pqid></control><display><type>article</type><title>Torque and Inductances Estimation for Finite Model Predictive Control of Highly Utilized Permanent Magnet Synchronous Motors</title><source>IEEE Electronic Library (IEL)</source><creator>Brosch, Anian ; Wallscheid, Oliver ; Bocker, Joachim</creator><creatorcontrib>Brosch, Anian ; Wallscheid, Oliver ; Bocker, Joachim</creatorcontrib><description><![CDATA[For many permanent magnet synchronous motor (PMSM) drive applications (e.g., traction or automation), precise torque control is desired. Classically, this is based on extensive offline motor identification, e.g., by direct mapping of torque-flux-current look-up tables. In contrast, this article proposes a torque estimation method based on online differential inductances identification in combination with a data-driven finite-control-set (FCS) model predictive current control (MPCC). This scheme does not require offline identification or expert motor design knowledge. The required flux maps are determined by integrating the differential inductances in the left <inline-formula><tex-math notation="LaTeX">i_{\mathrm{d}}</tex-math></inline-formula>-<inline-formula><tex-math notation="LaTeX">i_{\mathrm{q}}</tex-math></inline-formula> half-plane. By considering varying differential inductances, the proposed method is ideally suited for highly utilized PMSM with significant (cross-) saturation effects where estimation models with constant inductances fail. For the identification of the differential inductances, the system excitation, based on the FCS-MPCC working principle, is utilized. Consequently, no additional signal injection is required and the estimation scheme is applicable in the entire speed range. With this method, an open-loop torque control can be realized without knowledge of exact motor parameters except the permanent magnet flux linkage as a datasheet parameter. Extensive experimental investigations on a highly utilized PMSM in the entire speed range including standstill prove the performance of the proposed approach.]]></description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3060469</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Estimation ; Finite-control-set ; Hidden Markov models ; identification ; Knowledge based engineering ; least squares ; Lookup tables ; Mathematical model ; Mathematical models ; model predictive control ; Parameters ; Permanent magnet motors ; permanent magnet synchronous motor ; Permanent magnets ; Predictive control ; self-commissioning ; Signal injection ; Synchronous motors ; Torque ; torque estimation ; Torque measurement</subject><ispartof>IEEE transactions on industrial informatics, 2021-12, Vol.17 (12), p.8080-8091</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a27ae54ccc1a1eb265577b4758cf03ff4340189d896caa5f40e3cc1869180d773</citedby><cites>FETCH-LOGICAL-c291t-a27ae54ccc1a1eb265577b4758cf03ff4340189d896caa5f40e3cc1869180d773</cites><orcidid>0000-0001-9362-8777 ; 0000-0003-4871-1664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9359525$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9359525$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Brosch, Anian</creatorcontrib><creatorcontrib>Wallscheid, Oliver</creatorcontrib><creatorcontrib>Bocker, Joachim</creatorcontrib><title>Torque and Inductances Estimation for Finite Model Predictive Control of Highly Utilized Permanent Magnet Synchronous Motors</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description><![CDATA[For many permanent magnet synchronous motor (PMSM) drive applications (e.g., traction or automation), precise torque control is desired. Classically, this is based on extensive offline motor identification, e.g., by direct mapping of torque-flux-current look-up tables. In contrast, this article proposes a torque estimation method based on online differential inductances identification in combination with a data-driven finite-control-set (FCS) model predictive current control (MPCC). This scheme does not require offline identification or expert motor design knowledge. The required flux maps are determined by integrating the differential inductances in the left <inline-formula><tex-math notation="LaTeX">i_{\mathrm{d}}</tex-math></inline-formula>-<inline-formula><tex-math notation="LaTeX">i_{\mathrm{q}}</tex-math></inline-formula> half-plane. By considering varying differential inductances, the proposed method is ideally suited for highly utilized PMSM with significant (cross-) saturation effects where estimation models with constant inductances fail. For the identification of the differential inductances, the system excitation, based on the FCS-MPCC working principle, is utilized. Consequently, no additional signal injection is required and the estimation scheme is applicable in the entire speed range. With this method, an open-loop torque control can be realized without knowledge of exact motor parameters except the permanent magnet flux linkage as a datasheet parameter. Extensive experimental investigations on a highly utilized PMSM in the entire speed range including standstill prove the performance of the proposed approach.]]></description><subject>Estimation</subject><subject>Finite-control-set</subject><subject>Hidden Markov models</subject><subject>identification</subject><subject>Knowledge based engineering</subject><subject>least squares</subject><subject>Lookup tables</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>model predictive control</subject><subject>Parameters</subject><subject>Permanent magnet motors</subject><subject>permanent magnet synchronous motor</subject><subject>Permanent magnets</subject><subject>Predictive control</subject><subject>self-commissioning</subject><subject>Signal injection</subject><subject>Synchronous motors</subject><subject>Torque</subject><subject>torque estimation</subject><subject>Torque measurement</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRhdRsFbvgpeA562TZLO7OUqptmCxYHte0uxsG1mTmqRCxR9vpMXTzOF93zAvy24pjCgF-bCczUYMGB1xKKEo5Vk2oLKgOYCA87QLQXPOgF9mVyG8A_AKuBxkP0vnP_dIlG3JzLZ7HZXVGMgkRPOhonGWdM6TJ2NNRDJ3LfZk4bE1OpovJGNno3c9cR2Zms22P5BVNL35xpYs0H8oizaSudpYjOTtYPXWO-v2IRVF58N1dtGpPuDNaQ6z1dNkOZ7mL6_Ps_HjS66ZpDFXrFIoCq01VRTXrBSiqtZFJWrdAe-6ghdAa9nWstRKia4A5ImtS0lraKuKD7P7Y-_Ou_RsiM2723ubTjZMlIIVIGuaKDhS2rsQPHbNzicH_tBQaP4cN8lx8-e4OTlOkbtjxCDiPy65kIIJ_gtIOXlB</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Brosch, Anian</creator><creator>Wallscheid, Oliver</creator><creator>Bocker, Joachim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9362-8777</orcidid><orcidid>https://orcid.org/0000-0003-4871-1664</orcidid></search><sort><creationdate>20211201</creationdate><title>Torque and Inductances Estimation for Finite Model Predictive Control of Highly Utilized Permanent Magnet Synchronous Motors</title><author>Brosch, Anian ; Wallscheid, Oliver ; Bocker, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a27ae54ccc1a1eb265577b4758cf03ff4340189d896caa5f40e3cc1869180d773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Estimation</topic><topic>Finite-control-set</topic><topic>Hidden Markov models</topic><topic>identification</topic><topic>Knowledge based engineering</topic><topic>least squares</topic><topic>Lookup tables</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>model predictive control</topic><topic>Parameters</topic><topic>Permanent magnet motors</topic><topic>permanent magnet synchronous motor</topic><topic>Permanent magnets</topic><topic>Predictive control</topic><topic>self-commissioning</topic><topic>Signal injection</topic><topic>Synchronous motors</topic><topic>Torque</topic><topic>torque estimation</topic><topic>Torque measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Brosch, Anian</creatorcontrib><creatorcontrib>Wallscheid, Oliver</creatorcontrib><creatorcontrib>Bocker, Joachim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brosch, Anian</au><au>Wallscheid, Oliver</au><au>Bocker, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Torque and Inductances Estimation for Finite Model Predictive Control of Highly Utilized Permanent Magnet Synchronous Motors</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>17</volume><issue>12</issue><spage>8080</spage><epage>8091</epage><pages>8080-8091</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract><![CDATA[For many permanent magnet synchronous motor (PMSM) drive applications (e.g., traction or automation), precise torque control is desired. Classically, this is based on extensive offline motor identification, e.g., by direct mapping of torque-flux-current look-up tables. In contrast, this article proposes a torque estimation method based on online differential inductances identification in combination with a data-driven finite-control-set (FCS) model predictive current control (MPCC). This scheme does not require offline identification or expert motor design knowledge. The required flux maps are determined by integrating the differential inductances in the left <inline-formula><tex-math notation="LaTeX">i_{\mathrm{d}}</tex-math></inline-formula>-<inline-formula><tex-math notation="LaTeX">i_{\mathrm{q}}</tex-math></inline-formula> half-plane. By considering varying differential inductances, the proposed method is ideally suited for highly utilized PMSM with significant (cross-) saturation effects where estimation models with constant inductances fail. For the identification of the differential inductances, the system excitation, based on the FCS-MPCC working principle, is utilized. Consequently, no additional signal injection is required and the estimation scheme is applicable in the entire speed range. With this method, an open-loop torque control can be realized without knowledge of exact motor parameters except the permanent magnet flux linkage as a datasheet parameter. Extensive experimental investigations on a highly utilized PMSM in the entire speed range including standstill prove the performance of the proposed approach.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3060469</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9362-8777</orcidid><orcidid>https://orcid.org/0000-0003-4871-1664</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2021-12, Vol.17 (12), p.8080-8091
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2021_3060469
source IEEE Electronic Library (IEL)
subjects Estimation
Finite-control-set
Hidden Markov models
identification
Knowledge based engineering
least squares
Lookup tables
Mathematical model
Mathematical models
model predictive control
Parameters
Permanent magnet motors
permanent magnet synchronous motor
Permanent magnets
Predictive control
self-commissioning
Signal injection
Synchronous motors
Torque
torque estimation
Torque measurement
title Torque and Inductances Estimation for Finite Model Predictive Control of Highly Utilized Permanent Magnet Synchronous Motors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Torque%20and%20Inductances%20Estimation%20for%20Finite%20Model%20Predictive%20Control%20of%20Highly%20Utilized%20Permanent%20Magnet%20Synchronous%20Motors&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Brosch,%20Anian&rft.date=2021-12-01&rft.volume=17&rft.issue=12&rft.spage=8080&rft.epage=8091&rft.pages=8080-8091&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3060469&rft_dat=%3Cproquest_RIE%3E2565240981%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565240981&rft_id=info:pmid/&rft_ieee_id=9359525&rfr_iscdi=true