Improved Iterative Learning Direct Torque Control for Torque Ripple Minimization of Surface-Mounted Permanent Magnet Synchronous Motor Drives

This article presents an improved iterative learning direct torque control (IL-DTC) to remarkably minimize the torque ripples for a surface-mounted permanent magnet synchronous motor (SPMSM) drive. Unlike the conventional IL-DTC, the proposed IL-DTC significantly attenuates the torque ripples by eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2021-11, Vol.17 (11), p.7291-7303
Hauptverfasser: Mohammed, Sadeq Ali Qasem, Choi, Han Ho, Jung, Jin-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7303
container_issue 11
container_start_page 7291
container_title IEEE transactions on industrial informatics
container_volume 17
creator Mohammed, Sadeq Ali Qasem
Choi, Han Ho
Jung, Jin-Woo
description This article presents an improved iterative learning direct torque control (IL-DTC) to remarkably minimize the torque ripples for a surface-mounted permanent magnet synchronous motor (SPMSM) drive. Unlike the conventional IL-DTC, the proposed IL-DTC significantly attenuates the torque ripples by effectively suppressing the repetitive disturbances using the speed and load torque compensating terms in the improved error dynamics via the improved feedback control terms and iterative learning control terms. Further, it has a simple structure and fast dynamic response due to the direct control of the torque and flux. The stability is verified through the convergence of speed errors to zero as the iteration index goes to infinity. The comparative results via MATLAB/Simulink and a prototype SPMSM test-bed with TI-TMS320F28335-DSP demonstrate the improved control performance (e.g., less torque ripples, faster transient response, smaller overshoot/undershoot, and smaller steady-state error) over the conventional IL-DTC under critical load/speed conditions with severe model parameter uncertainties.
doi_str_mv 10.1109/TII.2021.3053700
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2021_3053700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9334416</ieee_id><sourcerecordid>2556486739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-2f8b9537ee80686d87faff15a8615edf5f1165b5e751424f27d16cae4bd8c1e93</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYsoOKfvgi8Bnzvz0aTto8yvwori5nPJ2puZsSY1TQfzf_B_NmPTp3u5_M65nBNF1wRPCMH53aIoJhRTMmGYsxTjk2hE8oTEGHN8GnbOScwoZufRRd-vMQ4My0fRT9F2zm6hQYUHJ73eApqBdEabFXrQDmqPFtZ9DYCm1nhnN0hZ93d61123AVRqo1v9HdTWIKvQfHBK1hCXdjA-WL-Ba6UB41EpVwY8mu9M_emssUOPSuuD4YMLn_vL6EzJTQ9XxzmOPp4eF9OXePb6XEzvZ3FNs9THVGXLPKQEyLDIRJOlSipFuMwE4dAorggRfMkh5SShiaJpQ0QtIVk2WU0gZ-Po9uAbsoccva_WdnAmvKwo5yLJRMr2FD5QtbN970BVndOtdLuK4GpfehVKr_alV8fSg-TmINEA8I_njCUJEewXYZGAPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556486739</pqid></control><display><type>article</type><title>Improved Iterative Learning Direct Torque Control for Torque Ripple Minimization of Surface-Mounted Permanent Magnet Synchronous Motor Drives</title><source>IEEE Electronic Library (IEL)</source><creator>Mohammed, Sadeq Ali Qasem ; Choi, Han Ho ; Jung, Jin-Woo</creator><creatorcontrib>Mohammed, Sadeq Ali Qasem ; Choi, Han Ho ; Jung, Jin-Woo</creatorcontrib><description>This article presents an improved iterative learning direct torque control (IL-DTC) to remarkably minimize the torque ripples for a surface-mounted permanent magnet synchronous motor (SPMSM) drive. Unlike the conventional IL-DTC, the proposed IL-DTC significantly attenuates the torque ripples by effectively suppressing the repetitive disturbances using the speed and load torque compensating terms in the improved error dynamics via the improved feedback control terms and iterative learning control terms. Further, it has a simple structure and fast dynamic response due to the direct control of the torque and flux. The stability is verified through the convergence of speed errors to zero as the iteration index goes to infinity. The comparative results via MATLAB/Simulink and a prototype SPMSM test-bed with TI-TMS320F28335-DSP demonstrate the improved control performance (e.g., less torque ripples, faster transient response, smaller overshoot/undershoot, and smaller steady-state error) over the conventional IL-DTC under critical load/speed conditions with severe model parameter uncertainties.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3053700</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Control stability ; Direct torque control (DTC) ; Dynamic response ; Feedback control ; Harmonic analysis ; iterative learning control (ILC) ; Iterative methods ; Learning ; Mathematical model ; Parameter uncertainty ; Permanent magnet motors ; Permanent magnets ; repetitive disturbances ; Ripples ; Stators ; surface-mounted permanent magnet synchronous motor (SPMSM) ; Synchronous motors ; Torque ; Torque control ; torque ripple minimization (TRM) ; Traction motors ; Transient response</subject><ispartof>IEEE transactions on industrial informatics, 2021-11, Vol.17 (11), p.7291-7303</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-2f8b9537ee80686d87faff15a8615edf5f1165b5e751424f27d16cae4bd8c1e93</citedby><cites>FETCH-LOGICAL-c287t-2f8b9537ee80686d87faff15a8615edf5f1165b5e751424f27d16cae4bd8c1e93</cites><orcidid>0000-0002-1820-6096 ; 0000-0003-3429-5049 ; 0000-0003-0940-9876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9334416$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9334416$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohammed, Sadeq Ali Qasem</creatorcontrib><creatorcontrib>Choi, Han Ho</creatorcontrib><creatorcontrib>Jung, Jin-Woo</creatorcontrib><title>Improved Iterative Learning Direct Torque Control for Torque Ripple Minimization of Surface-Mounted Permanent Magnet Synchronous Motor Drives</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>This article presents an improved iterative learning direct torque control (IL-DTC) to remarkably minimize the torque ripples for a surface-mounted permanent magnet synchronous motor (SPMSM) drive. Unlike the conventional IL-DTC, the proposed IL-DTC significantly attenuates the torque ripples by effectively suppressing the repetitive disturbances using the speed and load torque compensating terms in the improved error dynamics via the improved feedback control terms and iterative learning control terms. Further, it has a simple structure and fast dynamic response due to the direct control of the torque and flux. The stability is verified through the convergence of speed errors to zero as the iteration index goes to infinity. The comparative results via MATLAB/Simulink and a prototype SPMSM test-bed with TI-TMS320F28335-DSP demonstrate the improved control performance (e.g., less torque ripples, faster transient response, smaller overshoot/undershoot, and smaller steady-state error) over the conventional IL-DTC under critical load/speed conditions with severe model parameter uncertainties.</description><subject>Control stability</subject><subject>Direct torque control (DTC)</subject><subject>Dynamic response</subject><subject>Feedback control</subject><subject>Harmonic analysis</subject><subject>iterative learning control (ILC)</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Mathematical model</subject><subject>Parameter uncertainty</subject><subject>Permanent magnet motors</subject><subject>Permanent magnets</subject><subject>repetitive disturbances</subject><subject>Ripples</subject><subject>Stators</subject><subject>surface-mounted permanent magnet synchronous motor (SPMSM)</subject><subject>Synchronous motors</subject><subject>Torque</subject><subject>Torque control</subject><subject>torque ripple minimization (TRM)</subject><subject>Traction motors</subject><subject>Transient response</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYsoOKfvgi8Bnzvz0aTto8yvwori5nPJ2puZsSY1TQfzf_B_NmPTp3u5_M65nBNF1wRPCMH53aIoJhRTMmGYsxTjk2hE8oTEGHN8GnbOScwoZufRRd-vMQ4My0fRT9F2zm6hQYUHJ73eApqBdEabFXrQDmqPFtZ9DYCm1nhnN0hZ93d61123AVRqo1v9HdTWIKvQfHBK1hCXdjA-WL-Ba6UB41EpVwY8mu9M_emssUOPSuuD4YMLn_vL6EzJTQ9XxzmOPp4eF9OXePb6XEzvZ3FNs9THVGXLPKQEyLDIRJOlSipFuMwE4dAorggRfMkh5SShiaJpQ0QtIVk2WU0gZ-Po9uAbsoccva_WdnAmvKwo5yLJRMr2FD5QtbN970BVndOtdLuK4GpfehVKr_alV8fSg-TmINEA8I_njCUJEewXYZGAPg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Mohammed, Sadeq Ali Qasem</creator><creator>Choi, Han Ho</creator><creator>Jung, Jin-Woo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1820-6096</orcidid><orcidid>https://orcid.org/0000-0003-3429-5049</orcidid><orcidid>https://orcid.org/0000-0003-0940-9876</orcidid></search><sort><creationdate>20211101</creationdate><title>Improved Iterative Learning Direct Torque Control for Torque Ripple Minimization of Surface-Mounted Permanent Magnet Synchronous Motor Drives</title><author>Mohammed, Sadeq Ali Qasem ; Choi, Han Ho ; Jung, Jin-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-2f8b9537ee80686d87faff15a8615edf5f1165b5e751424f27d16cae4bd8c1e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Control stability</topic><topic>Direct torque control (DTC)</topic><topic>Dynamic response</topic><topic>Feedback control</topic><topic>Harmonic analysis</topic><topic>iterative learning control (ILC)</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Mathematical model</topic><topic>Parameter uncertainty</topic><topic>Permanent magnet motors</topic><topic>Permanent magnets</topic><topic>repetitive disturbances</topic><topic>Ripples</topic><topic>Stators</topic><topic>surface-mounted permanent magnet synchronous motor (SPMSM)</topic><topic>Synchronous motors</topic><topic>Torque</topic><topic>Torque control</topic><topic>torque ripple minimization (TRM)</topic><topic>Traction motors</topic><topic>Transient response</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, Sadeq Ali Qasem</creatorcontrib><creatorcontrib>Choi, Han Ho</creatorcontrib><creatorcontrib>Jung, Jin-Woo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohammed, Sadeq Ali Qasem</au><au>Choi, Han Ho</au><au>Jung, Jin-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Iterative Learning Direct Torque Control for Torque Ripple Minimization of Surface-Mounted Permanent Magnet Synchronous Motor Drives</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>17</volume><issue>11</issue><spage>7291</spage><epage>7303</epage><pages>7291-7303</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>This article presents an improved iterative learning direct torque control (IL-DTC) to remarkably minimize the torque ripples for a surface-mounted permanent magnet synchronous motor (SPMSM) drive. Unlike the conventional IL-DTC, the proposed IL-DTC significantly attenuates the torque ripples by effectively suppressing the repetitive disturbances using the speed and load torque compensating terms in the improved error dynamics via the improved feedback control terms and iterative learning control terms. Further, it has a simple structure and fast dynamic response due to the direct control of the torque and flux. The stability is verified through the convergence of speed errors to zero as the iteration index goes to infinity. The comparative results via MATLAB/Simulink and a prototype SPMSM test-bed with TI-TMS320F28335-DSP demonstrate the improved control performance (e.g., less torque ripples, faster transient response, smaller overshoot/undershoot, and smaller steady-state error) over the conventional IL-DTC under critical load/speed conditions with severe model parameter uncertainties.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3053700</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1820-6096</orcidid><orcidid>https://orcid.org/0000-0003-3429-5049</orcidid><orcidid>https://orcid.org/0000-0003-0940-9876</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2021-11, Vol.17 (11), p.7291-7303
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2021_3053700
source IEEE Electronic Library (IEL)
subjects Control stability
Direct torque control (DTC)
Dynamic response
Feedback control
Harmonic analysis
iterative learning control (ILC)
Iterative methods
Learning
Mathematical model
Parameter uncertainty
Permanent magnet motors
Permanent magnets
repetitive disturbances
Ripples
Stators
surface-mounted permanent magnet synchronous motor (SPMSM)
Synchronous motors
Torque
Torque control
torque ripple minimization (TRM)
Traction motors
Transient response
title Improved Iterative Learning Direct Torque Control for Torque Ripple Minimization of Surface-Mounted Permanent Magnet Synchronous Motor Drives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Iterative%20Learning%20Direct%20Torque%20Control%20for%20Torque%20Ripple%20Minimization%20of%20Surface-Mounted%20Permanent%20Magnet%20Synchronous%20Motor%20Drives&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Mohammed,%20Sadeq%20Ali%20Qasem&rft.date=2021-11-01&rft.volume=17&rft.issue=11&rft.spage=7291&rft.epage=7303&rft.pages=7291-7303&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3053700&rft_dat=%3Cproquest_RIE%3E2556486739%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556486739&rft_id=info:pmid/&rft_ieee_id=9334416&rfr_iscdi=true