Dynamical Clustering in Electronic Commerce Systems via Optimization and Leadership Expansion

In many electronic commerce systems, detecting significant clusters is of great value to the analysis, design, and optimization of the commerce behaviors. In this article, we propose a new dynamical approach to detect the cluster configuration fast and accurately which can be applied to electronic c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2020-08, Vol.16 (8), p.5327-5334
Hauptverfasser: Li, Hui-Jia, Bu, Zhan, Wang, Zhen, Cao, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5334
container_issue 8
container_start_page 5327
container_title IEEE transactions on industrial informatics
container_volume 16
creator Li, Hui-Jia
Bu, Zhan
Wang, Zhen
Cao, Jie
description In many electronic commerce systems, detecting significant clusters is of great value to the analysis, design, and optimization of the commerce behaviors. In this article, we propose a new dynamical approach to detect the cluster configuration fast and accurately which can be applied to electronic commerce systems. First, we analyze the two-stage game in which the leader group members make contributions prior to the follower group, and propose an exact index, i.e., the leadership , to characterize the key leaders. Then an efficient dynamical system is used to guarantee the cluster configuration converges to an optimal state, which assigns each node to the corresponding cluster based on quality optimization, repeatedly. Our method is of high efficiency-the exponential term in the proposed dynamical system makes the convergence to be very fast with a nearly linear time. Extensive experiments on multiple types of datesets demonstrate the state-of-the-art performance of proposed method.
doi_str_mv 10.1109/TII.2019.2960835
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2019_2960835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8936884</ieee_id><sourcerecordid>2396877044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-d2fd0388bb99883eec362f482f83e625ad101e75ae74bc60e7e373d1ad9b75983</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzmXzsHqVWLRR6sB4lbJKJriSbuJuK9de7pcXTzDDPOwMPY9cCZkKAutssl7MYhJrFKgOJ6QmbCJWICCCF09CnqYgwBjxnF95_AmAOqCbs7WFndWcq3fJ5u_UjOWPfubF80VI1ut6ais_7riNXEX_ZBaDz_Ntovh5G05lfPZrecm1rviJdk_MfZuCLn0FbHxaX7KzRraerY52y18fFZv4crdZPy_n9KqoQ5RjVcVMDSlmWSkmJRBVmcZPIuAlDFqe6FiAoTzXlSVllQDlhjrXQtSrzVEmcstvD3cH1X1vyY_HZb50NL4sYVSbzHJIkUHCgKtd776gpBmc67XaFgGIvsQgSi73E4igxRG4OEUNE_7hUmEmZ4B9ImG5T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396877044</pqid></control><display><type>article</type><title>Dynamical Clustering in Electronic Commerce Systems via Optimization and Leadership Expansion</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Hui-Jia ; Bu, Zhan ; Wang, Zhen ; Cao, Jie</creator><creatorcontrib>Li, Hui-Jia ; Bu, Zhan ; Wang, Zhen ; Cao, Jie</creatorcontrib><description>In many electronic commerce systems, detecting significant clusters is of great value to the analysis, design, and optimization of the commerce behaviors. In this article, we propose a new dynamical approach to detect the cluster configuration fast and accurately which can be applied to electronic commerce systems. First, we analyze the two-stage game in which the leader group members make contributions prior to the follower group, and propose an exact index, i.e., the leadership , to characterize the key leaders. Then an efficient dynamical system is used to guarantee the cluster configuration converges to an optimal state, which assigns each node to the corresponding cluster based on quality optimization, repeatedly. Our method is of high efficiency-the exponential term in the proposed dynamical system makes the convergence to be very fast with a nearly linear time. Extensive experiments on multiple types of datesets demonstrate the state-of-the-art performance of proposed method.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2960835</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clustering ; clustering algorithm ; Clustering algorithms ; Computational complexity ; Computational modeling ; Configurations ; Convergence ; Design optimization ; Dynamical systems ; Electronic commerce ; electronic commerce systems ; game theory ; Games ; Indexes ; Leadership ; Optimization</subject><ispartof>IEEE transactions on industrial informatics, 2020-08, Vol.16 (8), p.5327-5334</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-d2fd0388bb99883eec362f482f83e625ad101e75ae74bc60e7e373d1ad9b75983</citedby><cites>FETCH-LOGICAL-c338t-d2fd0388bb99883eec362f482f83e625ad101e75ae74bc60e7e373d1ad9b75983</cites><orcidid>0000-0002-8182-2852 ; 0000-0003-1000-717X ; 0000-0002-9942-3243 ; 0000-0002-7582-8203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8936884$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8936884$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Hui-Jia</creatorcontrib><creatorcontrib>Bu, Zhan</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Cao, Jie</creatorcontrib><title>Dynamical Clustering in Electronic Commerce Systems via Optimization and Leadership Expansion</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In many electronic commerce systems, detecting significant clusters is of great value to the analysis, design, and optimization of the commerce behaviors. In this article, we propose a new dynamical approach to detect the cluster configuration fast and accurately which can be applied to electronic commerce systems. First, we analyze the two-stage game in which the leader group members make contributions prior to the follower group, and propose an exact index, i.e., the leadership , to characterize the key leaders. Then an efficient dynamical system is used to guarantee the cluster configuration converges to an optimal state, which assigns each node to the corresponding cluster based on quality optimization, repeatedly. Our method is of high efficiency-the exponential term in the proposed dynamical system makes the convergence to be very fast with a nearly linear time. Extensive experiments on multiple types of datesets demonstrate the state-of-the-art performance of proposed method.</description><subject>Clustering</subject><subject>clustering algorithm</subject><subject>Clustering algorithms</subject><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>Configurations</subject><subject>Convergence</subject><subject>Design optimization</subject><subject>Dynamical systems</subject><subject>Electronic commerce</subject><subject>electronic commerce systems</subject><subject>game theory</subject><subject>Games</subject><subject>Indexes</subject><subject>Leadership</subject><subject>Optimization</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzmXzsHqVWLRR6sB4lbJKJriSbuJuK9de7pcXTzDDPOwMPY9cCZkKAutssl7MYhJrFKgOJ6QmbCJWICCCF09CnqYgwBjxnF95_AmAOqCbs7WFndWcq3fJ5u_UjOWPfubF80VI1ut6ais_7riNXEX_ZBaDz_Ntovh5G05lfPZrecm1rviJdk_MfZuCLn0FbHxaX7KzRraerY52y18fFZv4crdZPy_n9KqoQ5RjVcVMDSlmWSkmJRBVmcZPIuAlDFqe6FiAoTzXlSVllQDlhjrXQtSrzVEmcstvD3cH1X1vyY_HZb50NL4sYVSbzHJIkUHCgKtd776gpBmc67XaFgGIvsQgSi73E4igxRG4OEUNE_7hUmEmZ4B9ImG5T</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Li, Hui-Jia</creator><creator>Bu, Zhan</creator><creator>Wang, Zhen</creator><creator>Cao, Jie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8182-2852</orcidid><orcidid>https://orcid.org/0000-0003-1000-717X</orcidid><orcidid>https://orcid.org/0000-0002-9942-3243</orcidid><orcidid>https://orcid.org/0000-0002-7582-8203</orcidid></search><sort><creationdate>20200801</creationdate><title>Dynamical Clustering in Electronic Commerce Systems via Optimization and Leadership Expansion</title><author>Li, Hui-Jia ; Bu, Zhan ; Wang, Zhen ; Cao, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-d2fd0388bb99883eec362f482f83e625ad101e75ae74bc60e7e373d1ad9b75983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>clustering algorithm</topic><topic>Clustering algorithms</topic><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>Configurations</topic><topic>Convergence</topic><topic>Design optimization</topic><topic>Dynamical systems</topic><topic>Electronic commerce</topic><topic>electronic commerce systems</topic><topic>game theory</topic><topic>Games</topic><topic>Indexes</topic><topic>Leadership</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Hui-Jia</creatorcontrib><creatorcontrib>Bu, Zhan</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Cao, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Hui-Jia</au><au>Bu, Zhan</au><au>Wang, Zhen</au><au>Cao, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical Clustering in Electronic Commerce Systems via Optimization and Leadership Expansion</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>5327</spage><epage>5334</epage><pages>5327-5334</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In many electronic commerce systems, detecting significant clusters is of great value to the analysis, design, and optimization of the commerce behaviors. In this article, we propose a new dynamical approach to detect the cluster configuration fast and accurately which can be applied to electronic commerce systems. First, we analyze the two-stage game in which the leader group members make contributions prior to the follower group, and propose an exact index, i.e., the leadership , to characterize the key leaders. Then an efficient dynamical system is used to guarantee the cluster configuration converges to an optimal state, which assigns each node to the corresponding cluster based on quality optimization, repeatedly. Our method is of high efficiency-the exponential term in the proposed dynamical system makes the convergence to be very fast with a nearly linear time. Extensive experiments on multiple types of datesets demonstrate the state-of-the-art performance of proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2960835</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8182-2852</orcidid><orcidid>https://orcid.org/0000-0003-1000-717X</orcidid><orcidid>https://orcid.org/0000-0002-9942-3243</orcidid><orcidid>https://orcid.org/0000-0002-7582-8203</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2020-08, Vol.16 (8), p.5327-5334
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2019_2960835
source IEEE Electronic Library (IEL)
subjects Clustering
clustering algorithm
Clustering algorithms
Computational complexity
Computational modeling
Configurations
Convergence
Design optimization
Dynamical systems
Electronic commerce
electronic commerce systems
game theory
Games
Indexes
Leadership
Optimization
title Dynamical Clustering in Electronic Commerce Systems via Optimization and Leadership Expansion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20Clustering%20in%20Electronic%20Commerce%20Systems%20via%20Optimization%20and%20Leadership%20Expansion&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Li,%20Hui-Jia&rft.date=2020-08-01&rft.volume=16&rft.issue=8&rft.spage=5327&rft.epage=5334&rft.pages=5327-5334&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2960835&rft_dat=%3Cproquest_RIE%3E2396877044%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396877044&rft_id=info:pmid/&rft_ieee_id=8936884&rfr_iscdi=true