Dynamical Clustering in Electronic Commerce Systems via Optimization and Leadership Expansion
In many electronic commerce systems, detecting significant clusters is of great value to the analysis, design, and optimization of the commerce behaviors. In this article, we propose a new dynamical approach to detect the cluster configuration fast and accurately which can be applied to electronic c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2020-08, Vol.16 (8), p.5327-5334 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5334 |
---|---|
container_issue | 8 |
container_start_page | 5327 |
container_title | IEEE transactions on industrial informatics |
container_volume | 16 |
creator | Li, Hui-Jia Bu, Zhan Wang, Zhen Cao, Jie |
description | In many electronic commerce systems, detecting significant clusters is of great value to the analysis, design, and optimization of the commerce behaviors. In this article, we propose a new dynamical approach to detect the cluster configuration fast and accurately which can be applied to electronic commerce systems. First, we analyze the two-stage game in which the leader group members make contributions prior to the follower group, and propose an exact index, i.e., the leadership , to characterize the key leaders. Then an efficient dynamical system is used to guarantee the cluster configuration converges to an optimal state, which assigns each node to the corresponding cluster based on quality optimization, repeatedly. Our method is of high efficiency-the exponential term in the proposed dynamical system makes the convergence to be very fast with a nearly linear time. Extensive experiments on multiple types of datesets demonstrate the state-of-the-art performance of proposed method. |
doi_str_mv | 10.1109/TII.2019.2960835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2019_2960835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8936884</ieee_id><sourcerecordid>2396877044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-d2fd0388bb99883eec362f482f83e625ad101e75ae74bc60e7e373d1ad9b75983</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzmXzsHqVWLRR6sB4lbJKJriSbuJuK9de7pcXTzDDPOwMPY9cCZkKAutssl7MYhJrFKgOJ6QmbCJWICCCF09CnqYgwBjxnF95_AmAOqCbs7WFndWcq3fJ5u_UjOWPfubF80VI1ut6ais_7riNXEX_ZBaDz_Ntovh5G05lfPZrecm1rviJdk_MfZuCLn0FbHxaX7KzRraerY52y18fFZv4crdZPy_n9KqoQ5RjVcVMDSlmWSkmJRBVmcZPIuAlDFqe6FiAoTzXlSVllQDlhjrXQtSrzVEmcstvD3cH1X1vyY_HZb50NL4sYVSbzHJIkUHCgKtd776gpBmc67XaFgGIvsQgSi73E4igxRG4OEUNE_7hUmEmZ4B9ImG5T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396877044</pqid></control><display><type>article</type><title>Dynamical Clustering in Electronic Commerce Systems via Optimization and Leadership Expansion</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Hui-Jia ; Bu, Zhan ; Wang, Zhen ; Cao, Jie</creator><creatorcontrib>Li, Hui-Jia ; Bu, Zhan ; Wang, Zhen ; Cao, Jie</creatorcontrib><description>In many electronic commerce systems, detecting significant clusters is of great value to the analysis, design, and optimization of the commerce behaviors. In this article, we propose a new dynamical approach to detect the cluster configuration fast and accurately which can be applied to electronic commerce systems. First, we analyze the two-stage game in which the leader group members make contributions prior to the follower group, and propose an exact index, i.e., the leadership , to characterize the key leaders. Then an efficient dynamical system is used to guarantee the cluster configuration converges to an optimal state, which assigns each node to the corresponding cluster based on quality optimization, repeatedly. Our method is of high efficiency-the exponential term in the proposed dynamical system makes the convergence to be very fast with a nearly linear time. Extensive experiments on multiple types of datesets demonstrate the state-of-the-art performance of proposed method.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2960835</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clustering ; clustering algorithm ; Clustering algorithms ; Computational complexity ; Computational modeling ; Configurations ; Convergence ; Design optimization ; Dynamical systems ; Electronic commerce ; electronic commerce systems ; game theory ; Games ; Indexes ; Leadership ; Optimization</subject><ispartof>IEEE transactions on industrial informatics, 2020-08, Vol.16 (8), p.5327-5334</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-d2fd0388bb99883eec362f482f83e625ad101e75ae74bc60e7e373d1ad9b75983</citedby><cites>FETCH-LOGICAL-c338t-d2fd0388bb99883eec362f482f83e625ad101e75ae74bc60e7e373d1ad9b75983</cites><orcidid>0000-0002-8182-2852 ; 0000-0003-1000-717X ; 0000-0002-9942-3243 ; 0000-0002-7582-8203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8936884$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8936884$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Hui-Jia</creatorcontrib><creatorcontrib>Bu, Zhan</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Cao, Jie</creatorcontrib><title>Dynamical Clustering in Electronic Commerce Systems via Optimization and Leadership Expansion</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In many electronic commerce systems, detecting significant clusters is of great value to the analysis, design, and optimization of the commerce behaviors. In this article, we propose a new dynamical approach to detect the cluster configuration fast and accurately which can be applied to electronic commerce systems. First, we analyze the two-stage game in which the leader group members make contributions prior to the follower group, and propose an exact index, i.e., the leadership , to characterize the key leaders. Then an efficient dynamical system is used to guarantee the cluster configuration converges to an optimal state, which assigns each node to the corresponding cluster based on quality optimization, repeatedly. Our method is of high efficiency-the exponential term in the proposed dynamical system makes the convergence to be very fast with a nearly linear time. Extensive experiments on multiple types of datesets demonstrate the state-of-the-art performance of proposed method.</description><subject>Clustering</subject><subject>clustering algorithm</subject><subject>Clustering algorithms</subject><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>Configurations</subject><subject>Convergence</subject><subject>Design optimization</subject><subject>Dynamical systems</subject><subject>Electronic commerce</subject><subject>electronic commerce systems</subject><subject>game theory</subject><subject>Games</subject><subject>Indexes</subject><subject>Leadership</subject><subject>Optimization</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzmXzsHqVWLRR6sB4lbJKJriSbuJuK9de7pcXTzDDPOwMPY9cCZkKAutssl7MYhJrFKgOJ6QmbCJWICCCF09CnqYgwBjxnF95_AmAOqCbs7WFndWcq3fJ5u_UjOWPfubF80VI1ut6ais_7riNXEX_ZBaDz_Ntovh5G05lfPZrecm1rviJdk_MfZuCLn0FbHxaX7KzRraerY52y18fFZv4crdZPy_n9KqoQ5RjVcVMDSlmWSkmJRBVmcZPIuAlDFqe6FiAoTzXlSVllQDlhjrXQtSrzVEmcstvD3cH1X1vyY_HZb50NL4sYVSbzHJIkUHCgKtd776gpBmc67XaFgGIvsQgSi73E4igxRG4OEUNE_7hUmEmZ4B9ImG5T</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Li, Hui-Jia</creator><creator>Bu, Zhan</creator><creator>Wang, Zhen</creator><creator>Cao, Jie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8182-2852</orcidid><orcidid>https://orcid.org/0000-0003-1000-717X</orcidid><orcidid>https://orcid.org/0000-0002-9942-3243</orcidid><orcidid>https://orcid.org/0000-0002-7582-8203</orcidid></search><sort><creationdate>20200801</creationdate><title>Dynamical Clustering in Electronic Commerce Systems via Optimization and Leadership Expansion</title><author>Li, Hui-Jia ; Bu, Zhan ; Wang, Zhen ; Cao, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-d2fd0388bb99883eec362f482f83e625ad101e75ae74bc60e7e373d1ad9b75983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>clustering algorithm</topic><topic>Clustering algorithms</topic><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>Configurations</topic><topic>Convergence</topic><topic>Design optimization</topic><topic>Dynamical systems</topic><topic>Electronic commerce</topic><topic>electronic commerce systems</topic><topic>game theory</topic><topic>Games</topic><topic>Indexes</topic><topic>Leadership</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Hui-Jia</creatorcontrib><creatorcontrib>Bu, Zhan</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Cao, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Hui-Jia</au><au>Bu, Zhan</au><au>Wang, Zhen</au><au>Cao, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical Clustering in Electronic Commerce Systems via Optimization and Leadership Expansion</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>5327</spage><epage>5334</epage><pages>5327-5334</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In many electronic commerce systems, detecting significant clusters is of great value to the analysis, design, and optimization of the commerce behaviors. In this article, we propose a new dynamical approach to detect the cluster configuration fast and accurately which can be applied to electronic commerce systems. First, we analyze the two-stage game in which the leader group members make contributions prior to the follower group, and propose an exact index, i.e., the leadership , to characterize the key leaders. Then an efficient dynamical system is used to guarantee the cluster configuration converges to an optimal state, which assigns each node to the corresponding cluster based on quality optimization, repeatedly. Our method is of high efficiency-the exponential term in the proposed dynamical system makes the convergence to be very fast with a nearly linear time. Extensive experiments on multiple types of datesets demonstrate the state-of-the-art performance of proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2960835</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8182-2852</orcidid><orcidid>https://orcid.org/0000-0003-1000-717X</orcidid><orcidid>https://orcid.org/0000-0002-9942-3243</orcidid><orcidid>https://orcid.org/0000-0002-7582-8203</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2020-08, Vol.16 (8), p.5327-5334 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2019_2960835 |
source | IEEE Electronic Library (IEL) |
subjects | Clustering clustering algorithm Clustering algorithms Computational complexity Computational modeling Configurations Convergence Design optimization Dynamical systems Electronic commerce electronic commerce systems game theory Games Indexes Leadership Optimization |
title | Dynamical Clustering in Electronic Commerce Systems via Optimization and Leadership Expansion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20Clustering%20in%20Electronic%20Commerce%20Systems%20via%20Optimization%20and%20Leadership%20Expansion&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Li,%20Hui-Jia&rft.date=2020-08-01&rft.volume=16&rft.issue=8&rft.spage=5327&rft.epage=5334&rft.pages=5327-5334&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2960835&rft_dat=%3Cproquest_RIE%3E2396877044%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396877044&rft_id=info:pmid/&rft_ieee_id=8936884&rfr_iscdi=true |