Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates

The onboard battery self-heaters are employed to improve the performance and lifetime of the automotive lithium-ion batteries under cold climates. The battery performance is determined by the core temperature which is significantly higher than the surface temperature during the fast self-heating, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2020-05, Vol.16 (5), p.3366-3375
Hauptverfasser: Zhu, Chong, Shang, Yunlong, Lu, Fei, Jiang, Yan, Cheng, Chenwen, Mi, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3375
container_issue 5
container_start_page 3366
container_title IEEE transactions on industrial informatics
container_volume 16
creator Zhu, Chong
Shang, Yunlong
Lu, Fei
Jiang, Yan
Cheng, Chenwen
Mi, Chris
description The onboard battery self-heaters are employed to improve the performance and lifetime of the automotive lithium-ion batteries under cold climates. The battery performance is determined by the core temperature which is significantly higher than the surface temperature during the fast self-heating, while only the surface temperature can be directly measured. By estimating the core temperature to monitor the self-heating condition, the heating time and the energy consumption can be improved. However, the high-frequency heating current and the time-variant battery impedance cannot be measured in real time by a low-sampling-rate battery management system, so that the regular core temperature estimation methods are not applicable during the self-heating. To solve the issues, an online core temperature estimation algorithm based on the lumped thermal-electrical model is developed for the onboard ac self-heater. By implementing an extended state observer to compensate for the effect of the parameter uncertainties, the core temperature can be accurately detected even with the unknown internal resistance and root mean square (RMS) heating current. The experimental validation of 18 650 lithium-ion batteries shows that the core temperature estimation error is within only 1.2 °C. As a result, the self-heating time and energy consumption can be reduced by 50%.
doi_str_mv 10.1109/TII.2019.2960833
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2019_2960833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8939426</ieee_id><sourcerecordid>2358916028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-8b77cb3b1ddc1f92304d647f376836f47ac202da85dd0490cfda097232870e7a3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxosoOKd3wUvBc-dL0jbJcRZ1hYEH59WQNYlmtM1MUsH_3owNT-_j8X3fe_yy7BbBAiHgD5u2XWBAfIF5DYyQs2yGeIkKgArOk64qVBAM5DK7CmEHQCgQPss-Gud1vtHDXnsZp6SfQrSDjNaNuXE-f9O9KVY6LcbPfDlFN7hof3S-tvHLTkPRJt-jjFF7q0Nux7xxvcqb_tChw3V2YWQf9M1pzrP356dNsyrWry9ts1wXHWEQC7altNuSLVKqQ4ZjAqWqS2oIrRmpTUllhwErySqloOTQGSWBU0wwo6CpJPPs_ti79-570iGKnZv8mE4KTCrGUQ2YJRccXZ13IXhtxN6nP_2vQCAOFEWiKA4UxYliitwdI1Zr_W9nnPAS1-QP3K1tjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358916028</pqid></control><display><type>article</type><title>Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Chong ; Shang, Yunlong ; Lu, Fei ; Jiang, Yan ; Cheng, Chenwen ; Mi, Chris</creator><creatorcontrib>Zhu, Chong ; Shang, Yunlong ; Lu, Fei ; Jiang, Yan ; Cheng, Chenwen ; Mi, Chris</creatorcontrib><description>The onboard battery self-heaters are employed to improve the performance and lifetime of the automotive lithium-ion batteries under cold climates. The battery performance is determined by the core temperature which is significantly higher than the surface temperature during the fast self-heating, while only the surface temperature can be directly measured. By estimating the core temperature to monitor the self-heating condition, the heating time and the energy consumption can be improved. However, the high-frequency heating current and the time-variant battery impedance cannot be measured in real time by a low-sampling-rate battery management system, so that the regular core temperature estimation methods are not applicable during the self-heating. To solve the issues, an online core temperature estimation algorithm based on the lumped thermal-electrical model is developed for the onboard ac self-heater. By implementing an extended state observer to compensate for the effect of the parameter uncertainties, the core temperature can be accurately detected even with the unknown internal resistance and root mean square (RMS) heating current. The experimental validation of 18 650 lithium-ion batteries shows that the core temperature estimation error is within only 1.2 °C. As a result, the self-heating time and energy consumption can be reduced by 50%.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2960833</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Alternating current ; Battery self-heater ; Cold weather ; core temperature estimation ; electric vehicles (EVs) ; Energy consumption ; energy saving ; Estimation ; extended state observer (ESO) ; Heating ; Heating systems ; Lithium ; Lithium-ion batteries ; Meteorology ; Parameter uncertainty ; Performance enhancement ; Rechargeable batteries ; Resistance ; State observers ; Surface temperature ; Temperature measurement</subject><ispartof>IEEE transactions on industrial informatics, 2020-05, Vol.16 (5), p.3366-3375</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-8b77cb3b1ddc1f92304d647f376836f47ac202da85dd0490cfda097232870e7a3</citedby><cites>FETCH-LOGICAL-c380t-8b77cb3b1ddc1f92304d647f376836f47ac202da85dd0490cfda097232870e7a3</cites><orcidid>0000-0002-5025-707X ; 0000-0002-6434-6006 ; 0000-0002-5471-8953 ; 0000-0002-4467-0677 ; 0000-0002-0539-5887 ; 0000-0001-8928-772X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8939426$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8939426$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Chong</creatorcontrib><creatorcontrib>Shang, Yunlong</creatorcontrib><creatorcontrib>Lu, Fei</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Cheng, Chenwen</creatorcontrib><creatorcontrib>Mi, Chris</creatorcontrib><title>Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The onboard battery self-heaters are employed to improve the performance and lifetime of the automotive lithium-ion batteries under cold climates. The battery performance is determined by the core temperature which is significantly higher than the surface temperature during the fast self-heating, while only the surface temperature can be directly measured. By estimating the core temperature to monitor the self-heating condition, the heating time and the energy consumption can be improved. However, the high-frequency heating current and the time-variant battery impedance cannot be measured in real time by a low-sampling-rate battery management system, so that the regular core temperature estimation methods are not applicable during the self-heating. To solve the issues, an online core temperature estimation algorithm based on the lumped thermal-electrical model is developed for the onboard ac self-heater. By implementing an extended state observer to compensate for the effect of the parameter uncertainties, the core temperature can be accurately detected even with the unknown internal resistance and root mean square (RMS) heating current. The experimental validation of 18 650 lithium-ion batteries shows that the core temperature estimation error is within only 1.2 °C. As a result, the self-heating time and energy consumption can be reduced by 50%.</description><subject>Algorithms</subject><subject>Alternating current</subject><subject>Battery self-heater</subject><subject>Cold weather</subject><subject>core temperature estimation</subject><subject>electric vehicles (EVs)</subject><subject>Energy consumption</subject><subject>energy saving</subject><subject>Estimation</subject><subject>extended state observer (ESO)</subject><subject>Heating</subject><subject>Heating systems</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Meteorology</subject><subject>Parameter uncertainty</subject><subject>Performance enhancement</subject><subject>Rechargeable batteries</subject><subject>Resistance</subject><subject>State observers</subject><subject>Surface temperature</subject><subject>Temperature measurement</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxosoOKd3wUvBc-dL0jbJcRZ1hYEH59WQNYlmtM1MUsH_3owNT-_j8X3fe_yy7BbBAiHgD5u2XWBAfIF5DYyQs2yGeIkKgArOk64qVBAM5DK7CmEHQCgQPss-Gud1vtHDXnsZp6SfQrSDjNaNuXE-f9O9KVY6LcbPfDlFN7hof3S-tvHLTkPRJt-jjFF7q0Nux7xxvcqb_tChw3V2YWQf9M1pzrP356dNsyrWry9ts1wXHWEQC7altNuSLVKqQ4ZjAqWqS2oIrRmpTUllhwErySqloOTQGSWBU0wwo6CpJPPs_ti79-570iGKnZv8mE4KTCrGUQ2YJRccXZ13IXhtxN6nP_2vQCAOFEWiKA4UxYliitwdI1Zr_W9nnPAS1-QP3K1tjw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zhu, Chong</creator><creator>Shang, Yunlong</creator><creator>Lu, Fei</creator><creator>Jiang, Yan</creator><creator>Cheng, Chenwen</creator><creator>Mi, Chris</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5025-707X</orcidid><orcidid>https://orcid.org/0000-0002-6434-6006</orcidid><orcidid>https://orcid.org/0000-0002-5471-8953</orcidid><orcidid>https://orcid.org/0000-0002-4467-0677</orcidid><orcidid>https://orcid.org/0000-0002-0539-5887</orcidid><orcidid>https://orcid.org/0000-0001-8928-772X</orcidid></search><sort><creationdate>20200501</creationdate><title>Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates</title><author>Zhu, Chong ; Shang, Yunlong ; Lu, Fei ; Jiang, Yan ; Cheng, Chenwen ; Mi, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-8b77cb3b1ddc1f92304d647f376836f47ac202da85dd0490cfda097232870e7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Alternating current</topic><topic>Battery self-heater</topic><topic>Cold weather</topic><topic>core temperature estimation</topic><topic>electric vehicles (EVs)</topic><topic>Energy consumption</topic><topic>energy saving</topic><topic>Estimation</topic><topic>extended state observer (ESO)</topic><topic>Heating</topic><topic>Heating systems</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Meteorology</topic><topic>Parameter uncertainty</topic><topic>Performance enhancement</topic><topic>Rechargeable batteries</topic><topic>Resistance</topic><topic>State observers</topic><topic>Surface temperature</topic><topic>Temperature measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chong</creatorcontrib><creatorcontrib>Shang, Yunlong</creatorcontrib><creatorcontrib>Lu, Fei</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Cheng, Chenwen</creatorcontrib><creatorcontrib>Mi, Chris</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Chong</au><au>Shang, Yunlong</au><au>Lu, Fei</au><au>Jiang, Yan</au><au>Cheng, Chenwen</au><au>Mi, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>5</issue><spage>3366</spage><epage>3375</epage><pages>3366-3375</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The onboard battery self-heaters are employed to improve the performance and lifetime of the automotive lithium-ion batteries under cold climates. The battery performance is determined by the core temperature which is significantly higher than the surface temperature during the fast self-heating, while only the surface temperature can be directly measured. By estimating the core temperature to monitor the self-heating condition, the heating time and the energy consumption can be improved. However, the high-frequency heating current and the time-variant battery impedance cannot be measured in real time by a low-sampling-rate battery management system, so that the regular core temperature estimation methods are not applicable during the self-heating. To solve the issues, an online core temperature estimation algorithm based on the lumped thermal-electrical model is developed for the onboard ac self-heater. By implementing an extended state observer to compensate for the effect of the parameter uncertainties, the core temperature can be accurately detected even with the unknown internal resistance and root mean square (RMS) heating current. The experimental validation of 18 650 lithium-ion batteries shows that the core temperature estimation error is within only 1.2 °C. As a result, the self-heating time and energy consumption can be reduced by 50%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2960833</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5025-707X</orcidid><orcidid>https://orcid.org/0000-0002-6434-6006</orcidid><orcidid>https://orcid.org/0000-0002-5471-8953</orcidid><orcidid>https://orcid.org/0000-0002-4467-0677</orcidid><orcidid>https://orcid.org/0000-0002-0539-5887</orcidid><orcidid>https://orcid.org/0000-0001-8928-772X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2020-05, Vol.16 (5), p.3366-3375
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2019_2960833
source IEEE Electronic Library (IEL)
subjects Algorithms
Alternating current
Battery self-heater
Cold weather
core temperature estimation
electric vehicles (EVs)
Energy consumption
energy saving
Estimation
extended state observer (ESO)
Heating
Heating systems
Lithium
Lithium-ion batteries
Meteorology
Parameter uncertainty
Performance enhancement
Rechargeable batteries
Resistance
State observers
Surface temperature
Temperature measurement
title Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core%20Temperature%20Estimation%20for%20Self-Heating%20Automotive%20Lithium-Ion%20Batteries%20in%20Cold%20Climates&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zhu,%20Chong&rft.date=2020-05-01&rft.volume=16&rft.issue=5&rft.spage=3366&rft.epage=3375&rft.pages=3366-3375&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2960833&rft_dat=%3Cproquest_RIE%3E2358916028%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358916028&rft_id=info:pmid/&rft_ieee_id=8939426&rfr_iscdi=true