Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates
The onboard battery self-heaters are employed to improve the performance and lifetime of the automotive lithium-ion batteries under cold climates. The battery performance is determined by the core temperature which is significantly higher than the surface temperature during the fast self-heating, wh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2020-05, Vol.16 (5), p.3366-3375 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3375 |
---|---|
container_issue | 5 |
container_start_page | 3366 |
container_title | IEEE transactions on industrial informatics |
container_volume | 16 |
creator | Zhu, Chong Shang, Yunlong Lu, Fei Jiang, Yan Cheng, Chenwen Mi, Chris |
description | The onboard battery self-heaters are employed to improve the performance and lifetime of the automotive lithium-ion batteries under cold climates. The battery performance is determined by the core temperature which is significantly higher than the surface temperature during the fast self-heating, while only the surface temperature can be directly measured. By estimating the core temperature to monitor the self-heating condition, the heating time and the energy consumption can be improved. However, the high-frequency heating current and the time-variant battery impedance cannot be measured in real time by a low-sampling-rate battery management system, so that the regular core temperature estimation methods are not applicable during the self-heating. To solve the issues, an online core temperature estimation algorithm based on the lumped thermal-electrical model is developed for the onboard ac self-heater. By implementing an extended state observer to compensate for the effect of the parameter uncertainties, the core temperature can be accurately detected even with the unknown internal resistance and root mean square (RMS) heating current. The experimental validation of 18 650 lithium-ion batteries shows that the core temperature estimation error is within only 1.2 °C. As a result, the self-heating time and energy consumption can be reduced by 50%. |
doi_str_mv | 10.1109/TII.2019.2960833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2019_2960833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8939426</ieee_id><sourcerecordid>2358916028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-8b77cb3b1ddc1f92304d647f376836f47ac202da85dd0490cfda097232870e7a3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxosoOKd3wUvBc-dL0jbJcRZ1hYEH59WQNYlmtM1MUsH_3owNT-_j8X3fe_yy7BbBAiHgD5u2XWBAfIF5DYyQs2yGeIkKgArOk64qVBAM5DK7CmEHQCgQPss-Gud1vtHDXnsZp6SfQrSDjNaNuXE-f9O9KVY6LcbPfDlFN7hof3S-tvHLTkPRJt-jjFF7q0Nux7xxvcqb_tChw3V2YWQf9M1pzrP356dNsyrWry9ts1wXHWEQC7altNuSLVKqQ4ZjAqWqS2oIrRmpTUllhwErySqloOTQGSWBU0wwo6CpJPPs_ti79-570iGKnZv8mE4KTCrGUQ2YJRccXZ13IXhtxN6nP_2vQCAOFEWiKA4UxYliitwdI1Zr_W9nnPAS1-QP3K1tjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358916028</pqid></control><display><type>article</type><title>Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Chong ; Shang, Yunlong ; Lu, Fei ; Jiang, Yan ; Cheng, Chenwen ; Mi, Chris</creator><creatorcontrib>Zhu, Chong ; Shang, Yunlong ; Lu, Fei ; Jiang, Yan ; Cheng, Chenwen ; Mi, Chris</creatorcontrib><description>The onboard battery self-heaters are employed to improve the performance and lifetime of the automotive lithium-ion batteries under cold climates. The battery performance is determined by the core temperature which is significantly higher than the surface temperature during the fast self-heating, while only the surface temperature can be directly measured. By estimating the core temperature to monitor the self-heating condition, the heating time and the energy consumption can be improved. However, the high-frequency heating current and the time-variant battery impedance cannot be measured in real time by a low-sampling-rate battery management system, so that the regular core temperature estimation methods are not applicable during the self-heating. To solve the issues, an online core temperature estimation algorithm based on the lumped thermal-electrical model is developed for the onboard ac self-heater. By implementing an extended state observer to compensate for the effect of the parameter uncertainties, the core temperature can be accurately detected even with the unknown internal resistance and root mean square (RMS) heating current. The experimental validation of 18 650 lithium-ion batteries shows that the core temperature estimation error is within only 1.2 °C. As a result, the self-heating time and energy consumption can be reduced by 50%.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2960833</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Alternating current ; Battery self-heater ; Cold weather ; core temperature estimation ; electric vehicles (EVs) ; Energy consumption ; energy saving ; Estimation ; extended state observer (ESO) ; Heating ; Heating systems ; Lithium ; Lithium-ion batteries ; Meteorology ; Parameter uncertainty ; Performance enhancement ; Rechargeable batteries ; Resistance ; State observers ; Surface temperature ; Temperature measurement</subject><ispartof>IEEE transactions on industrial informatics, 2020-05, Vol.16 (5), p.3366-3375</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-8b77cb3b1ddc1f92304d647f376836f47ac202da85dd0490cfda097232870e7a3</citedby><cites>FETCH-LOGICAL-c380t-8b77cb3b1ddc1f92304d647f376836f47ac202da85dd0490cfda097232870e7a3</cites><orcidid>0000-0002-5025-707X ; 0000-0002-6434-6006 ; 0000-0002-5471-8953 ; 0000-0002-4467-0677 ; 0000-0002-0539-5887 ; 0000-0001-8928-772X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8939426$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8939426$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Chong</creatorcontrib><creatorcontrib>Shang, Yunlong</creatorcontrib><creatorcontrib>Lu, Fei</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Cheng, Chenwen</creatorcontrib><creatorcontrib>Mi, Chris</creatorcontrib><title>Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The onboard battery self-heaters are employed to improve the performance and lifetime of the automotive lithium-ion batteries under cold climates. The battery performance is determined by the core temperature which is significantly higher than the surface temperature during the fast self-heating, while only the surface temperature can be directly measured. By estimating the core temperature to monitor the self-heating condition, the heating time and the energy consumption can be improved. However, the high-frequency heating current and the time-variant battery impedance cannot be measured in real time by a low-sampling-rate battery management system, so that the regular core temperature estimation methods are not applicable during the self-heating. To solve the issues, an online core temperature estimation algorithm based on the lumped thermal-electrical model is developed for the onboard ac self-heater. By implementing an extended state observer to compensate for the effect of the parameter uncertainties, the core temperature can be accurately detected even with the unknown internal resistance and root mean square (RMS) heating current. The experimental validation of 18 650 lithium-ion batteries shows that the core temperature estimation error is within only 1.2 °C. As a result, the self-heating time and energy consumption can be reduced by 50%.</description><subject>Algorithms</subject><subject>Alternating current</subject><subject>Battery self-heater</subject><subject>Cold weather</subject><subject>core temperature estimation</subject><subject>electric vehicles (EVs)</subject><subject>Energy consumption</subject><subject>energy saving</subject><subject>Estimation</subject><subject>extended state observer (ESO)</subject><subject>Heating</subject><subject>Heating systems</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Meteorology</subject><subject>Parameter uncertainty</subject><subject>Performance enhancement</subject><subject>Rechargeable batteries</subject><subject>Resistance</subject><subject>State observers</subject><subject>Surface temperature</subject><subject>Temperature measurement</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxosoOKd3wUvBc-dL0jbJcRZ1hYEH59WQNYlmtM1MUsH_3owNT-_j8X3fe_yy7BbBAiHgD5u2XWBAfIF5DYyQs2yGeIkKgArOk64qVBAM5DK7CmEHQCgQPss-Gud1vtHDXnsZp6SfQrSDjNaNuXE-f9O9KVY6LcbPfDlFN7hof3S-tvHLTkPRJt-jjFF7q0Nux7xxvcqb_tChw3V2YWQf9M1pzrP356dNsyrWry9ts1wXHWEQC7altNuSLVKqQ4ZjAqWqS2oIrRmpTUllhwErySqloOTQGSWBU0wwo6CpJPPs_ti79-570iGKnZv8mE4KTCrGUQ2YJRccXZ13IXhtxN6nP_2vQCAOFEWiKA4UxYliitwdI1Zr_W9nnPAS1-QP3K1tjw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zhu, Chong</creator><creator>Shang, Yunlong</creator><creator>Lu, Fei</creator><creator>Jiang, Yan</creator><creator>Cheng, Chenwen</creator><creator>Mi, Chris</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5025-707X</orcidid><orcidid>https://orcid.org/0000-0002-6434-6006</orcidid><orcidid>https://orcid.org/0000-0002-5471-8953</orcidid><orcidid>https://orcid.org/0000-0002-4467-0677</orcidid><orcidid>https://orcid.org/0000-0002-0539-5887</orcidid><orcidid>https://orcid.org/0000-0001-8928-772X</orcidid></search><sort><creationdate>20200501</creationdate><title>Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates</title><author>Zhu, Chong ; Shang, Yunlong ; Lu, Fei ; Jiang, Yan ; Cheng, Chenwen ; Mi, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-8b77cb3b1ddc1f92304d647f376836f47ac202da85dd0490cfda097232870e7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Alternating current</topic><topic>Battery self-heater</topic><topic>Cold weather</topic><topic>core temperature estimation</topic><topic>electric vehicles (EVs)</topic><topic>Energy consumption</topic><topic>energy saving</topic><topic>Estimation</topic><topic>extended state observer (ESO)</topic><topic>Heating</topic><topic>Heating systems</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Meteorology</topic><topic>Parameter uncertainty</topic><topic>Performance enhancement</topic><topic>Rechargeable batteries</topic><topic>Resistance</topic><topic>State observers</topic><topic>Surface temperature</topic><topic>Temperature measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chong</creatorcontrib><creatorcontrib>Shang, Yunlong</creatorcontrib><creatorcontrib>Lu, Fei</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Cheng, Chenwen</creatorcontrib><creatorcontrib>Mi, Chris</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Chong</au><au>Shang, Yunlong</au><au>Lu, Fei</au><au>Jiang, Yan</au><au>Cheng, Chenwen</au><au>Mi, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>5</issue><spage>3366</spage><epage>3375</epage><pages>3366-3375</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The onboard battery self-heaters are employed to improve the performance and lifetime of the automotive lithium-ion batteries under cold climates. The battery performance is determined by the core temperature which is significantly higher than the surface temperature during the fast self-heating, while only the surface temperature can be directly measured. By estimating the core temperature to monitor the self-heating condition, the heating time and the energy consumption can be improved. However, the high-frequency heating current and the time-variant battery impedance cannot be measured in real time by a low-sampling-rate battery management system, so that the regular core temperature estimation methods are not applicable during the self-heating. To solve the issues, an online core temperature estimation algorithm based on the lumped thermal-electrical model is developed for the onboard ac self-heater. By implementing an extended state observer to compensate for the effect of the parameter uncertainties, the core temperature can be accurately detected even with the unknown internal resistance and root mean square (RMS) heating current. The experimental validation of 18 650 lithium-ion batteries shows that the core temperature estimation error is within only 1.2 °C. As a result, the self-heating time and energy consumption can be reduced by 50%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2960833</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5025-707X</orcidid><orcidid>https://orcid.org/0000-0002-6434-6006</orcidid><orcidid>https://orcid.org/0000-0002-5471-8953</orcidid><orcidid>https://orcid.org/0000-0002-4467-0677</orcidid><orcidid>https://orcid.org/0000-0002-0539-5887</orcidid><orcidid>https://orcid.org/0000-0001-8928-772X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2020-05, Vol.16 (5), p.3366-3375 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2019_2960833 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Alternating current Battery self-heater Cold weather core temperature estimation electric vehicles (EVs) Energy consumption energy saving Estimation extended state observer (ESO) Heating Heating systems Lithium Lithium-ion batteries Meteorology Parameter uncertainty Performance enhancement Rechargeable batteries Resistance State observers Surface temperature Temperature measurement |
title | Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core%20Temperature%20Estimation%20for%20Self-Heating%20Automotive%20Lithium-Ion%20Batteries%20in%20Cold%20Climates&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zhu,%20Chong&rft.date=2020-05-01&rft.volume=16&rft.issue=5&rft.spage=3366&rft.epage=3375&rft.pages=3366-3375&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2960833&rft_dat=%3Cproquest_RIE%3E2358916028%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358916028&rft_id=info:pmid/&rft_ieee_id=8939426&rfr_iscdi=true |