Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT

The rapid increase in the volume of data generated from connected devices in industrial Internet of Things paradigm, opens up new possibilities for enhancing the quality of service for the emerging applications through data sharing. However, security and privacy concerns (e.g., data leakage) are maj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2020-06, Vol.16 (6), p.4177-4186
Hauptverfasser: Lu, Yunlong, Huang, Xiaohong, Dai, Yueyue, Maharjan, Sabita, Zhang, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4186
container_issue 6
container_start_page 4177
container_title IEEE transactions on industrial informatics
container_volume 16
creator Lu, Yunlong
Huang, Xiaohong
Dai, Yueyue
Maharjan, Sabita
Zhang, Yan
description The rapid increase in the volume of data generated from connected devices in industrial Internet of Things paradigm, opens up new possibilities for enhancing the quality of service for the emerging applications through data sharing. However, security and privacy concerns (e.g., data leakage) are major obstacles for data providers to share their data in wireless networks. The leakage of private data can lead to serious issues beyond financial loss for the providers. In this article, we first design a blockchain empowered secure data sharing architecture for distributed multiple parties. Then, we formulate the data sharing problem into a machine-learning problem by incorporating privacy-preserved federated learning. The privacy of data is well-maintained by sharing the data model instead of revealing the actual data. Finally, we integrate federated learning in the consensus process of permissioned blockchain, so that the computing work for consensus can also be used for federated training. Numerical results derived from real-world datasets show that the proposed data sharing scheme achieves good accuracy, high efficiency, and enhanced security.
doi_str_mv 10.1109/TII.2019.2942190
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2019_2942190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8843900</ieee_id><sourcerecordid>2374736403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-67a907d5e194c3bb04beb9ff5b47b498397bb905a682c472a52d31e4601252113</originalsourceid><addsrcrecordid>eNqNkctKAzEUQAdRsFb3gpsBlzL15jGPLLVaHShYsLodkswdjdakJtOKf29qRbeuciHnJOEkSY4JjAgBcT6v6xEFIkZUcEoE7CQDIjjJAHLYjXOek4xRYPvJQQgvAKwEJgbJ4-XC6Vf9LI1NpW3TCbboZY9tOkXprbFPaed8OvNmLfVnNvMY0K_j9pXsZXr_LP0GiXJt21XovZGLtHbzw2Svk4uARz_rMHmYXM_Ht9n07qYeX0wzzYH3WVFKAWWbY3yqZkoBV6hE1-WKl4qLiolSKQG5LCqqeUllTltGkBdAaE4JYcPkdHvu0rv3FYa-eXErb-OVDWUlL1nBgUUKtpT2LgSPXbP05k36z4ZAs6nXxHrNpl7zUy8qZ1vlA5XrgjZoNf5qEKvSglWk-p4iXf2fHpte9sbZsVvZPqonW9Ug_ilVxZmIn_QFM8SKHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374736403</pqid></control><display><type>article</type><title>Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Yunlong ; Huang, Xiaohong ; Dai, Yueyue ; Maharjan, Sabita ; Zhang, Yan</creator><creatorcontrib>Lu, Yunlong ; Huang, Xiaohong ; Dai, Yueyue ; Maharjan, Sabita ; Zhang, Yan</creatorcontrib><description>The rapid increase in the volume of data generated from connected devices in industrial Internet of Things paradigm, opens up new possibilities for enhancing the quality of service for the emerging applications through data sharing. However, security and privacy concerns (e.g., data leakage) are major obstacles for data providers to share their data in wireless networks. The leakage of private data can lead to serious issues beyond financial loss for the providers. In this article, we first design a blockchain empowered secure data sharing architecture for distributed multiple parties. Then, we formulate the data sharing problem into a machine-learning problem by incorporating privacy-preserved federated learning. The privacy of data is well-maintained by sharing the data model instead of revealing the actual data. Finally, we integrate federated learning in the consensus process of permissioned blockchain, so that the computing work for consensus can also be used for federated training. Numerical results derived from real-world datasets show that the proposed data sharing scheme achieves good accuracy, high efficiency, and enhanced security.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2942190</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Automation &amp; Control Systems ; Blockchain ; Collaboration ; Computer Science ; Computer Science, Interdisciplinary Applications ; Cryptography ; Data models ; Data privacy ; Data retrieval ; Data sharing ; Distributed databases ; Electronic devices ; Engineering ; Engineering, Industrial ; Federated learning ; Industrial applications ; industrial Internet of Things (IIoT) ; Information sharing ; Internet of Things ; Leakage ; Machine learning ; permissioned blockchain ; Privacy ; privacy-preserved ; Science &amp; Technology ; Security ; Technology ; Wireless networks</subject><ispartof>IEEE transactions on industrial informatics, 2020-06, Vol.16 (6), p.4177-4186</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>671</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526381800052</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c404t-67a907d5e194c3bb04beb9ff5b47b498397bb905a682c472a52d31e4601252113</citedby><cites>FETCH-LOGICAL-c404t-67a907d5e194c3bb04beb9ff5b47b498397bb905a682c472a52d31e4601252113</cites><orcidid>0000-0002-8561-5092 ; 0000-0002-2163-987X ; 0000-0001-9552-5130 ; 0000-0002-7275-2274 ; 0000-0002-4616-8488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8843900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,28253,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8843900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Yunlong</creatorcontrib><creatorcontrib>Huang, Xiaohong</creatorcontrib><creatorcontrib>Dai, Yueyue</creatorcontrib><creatorcontrib>Maharjan, Sabita</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><title>Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><addtitle>IEEE T IND INFORM</addtitle><description>The rapid increase in the volume of data generated from connected devices in industrial Internet of Things paradigm, opens up new possibilities for enhancing the quality of service for the emerging applications through data sharing. However, security and privacy concerns (e.g., data leakage) are major obstacles for data providers to share their data in wireless networks. The leakage of private data can lead to serious issues beyond financial loss for the providers. In this article, we first design a blockchain empowered secure data sharing architecture for distributed multiple parties. Then, we formulate the data sharing problem into a machine-learning problem by incorporating privacy-preserved federated learning. The privacy of data is well-maintained by sharing the data model instead of revealing the actual data. Finally, we integrate federated learning in the consensus process of permissioned blockchain, so that the computing work for consensus can also be used for federated training. Numerical results derived from real-world datasets show that the proposed data sharing scheme achieves good accuracy, high efficiency, and enhanced security.</description><subject>Automation &amp; Control Systems</subject><subject>Blockchain</subject><subject>Collaboration</subject><subject>Computer Science</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Cryptography</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Data retrieval</subject><subject>Data sharing</subject><subject>Distributed databases</subject><subject>Electronic devices</subject><subject>Engineering</subject><subject>Engineering, Industrial</subject><subject>Federated learning</subject><subject>Industrial applications</subject><subject>industrial Internet of Things (IIoT)</subject><subject>Information sharing</subject><subject>Internet of Things</subject><subject>Leakage</subject><subject>Machine learning</subject><subject>permissioned blockchain</subject><subject>Privacy</subject><subject>privacy-preserved</subject><subject>Science &amp; Technology</subject><subject>Security</subject><subject>Technology</subject><subject>Wireless networks</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkctKAzEUQAdRsFb3gpsBlzL15jGPLLVaHShYsLodkswdjdakJtOKf29qRbeuciHnJOEkSY4JjAgBcT6v6xEFIkZUcEoE7CQDIjjJAHLYjXOek4xRYPvJQQgvAKwEJgbJ4-XC6Vf9LI1NpW3TCbboZY9tOkXprbFPaed8OvNmLfVnNvMY0K_j9pXsZXr_LP0GiXJt21XovZGLtHbzw2Svk4uARz_rMHmYXM_Ht9n07qYeX0wzzYH3WVFKAWWbY3yqZkoBV6hE1-WKl4qLiolSKQG5LCqqeUllTltGkBdAaE4JYcPkdHvu0rv3FYa-eXErb-OVDWUlL1nBgUUKtpT2LgSPXbP05k36z4ZAs6nXxHrNpl7zUy8qZ1vlA5XrgjZoNf5qEKvSglWk-p4iXf2fHpte9sbZsVvZPqonW9Ug_ilVxZmIn_QFM8SKHA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Lu, Yunlong</creator><creator>Huang, Xiaohong</creator><creator>Dai, Yueyue</creator><creator>Maharjan, Sabita</creator><creator>Zhang, Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8561-5092</orcidid><orcidid>https://orcid.org/0000-0002-2163-987X</orcidid><orcidid>https://orcid.org/0000-0001-9552-5130</orcidid><orcidid>https://orcid.org/0000-0002-7275-2274</orcidid><orcidid>https://orcid.org/0000-0002-4616-8488</orcidid></search><sort><creationdate>20200601</creationdate><title>Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT</title><author>Lu, Yunlong ; Huang, Xiaohong ; Dai, Yueyue ; Maharjan, Sabita ; Zhang, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-67a907d5e194c3bb04beb9ff5b47b498397bb905a682c472a52d31e4601252113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation &amp; Control Systems</topic><topic>Blockchain</topic><topic>Collaboration</topic><topic>Computer Science</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Cryptography</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Data retrieval</topic><topic>Data sharing</topic><topic>Distributed databases</topic><topic>Electronic devices</topic><topic>Engineering</topic><topic>Engineering, Industrial</topic><topic>Federated learning</topic><topic>Industrial applications</topic><topic>industrial Internet of Things (IIoT)</topic><topic>Information sharing</topic><topic>Internet of Things</topic><topic>Leakage</topic><topic>Machine learning</topic><topic>permissioned blockchain</topic><topic>Privacy</topic><topic>privacy-preserved</topic><topic>Science &amp; Technology</topic><topic>Security</topic><topic>Technology</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yunlong</creatorcontrib><creatorcontrib>Huang, Xiaohong</creatorcontrib><creatorcontrib>Dai, Yueyue</creatorcontrib><creatorcontrib>Maharjan, Sabita</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Yunlong</au><au>Huang, Xiaohong</au><au>Dai, Yueyue</au><au>Maharjan, Sabita</au><au>Zhang, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><stitle>IEEE T IND INFORM</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>16</volume><issue>6</issue><spage>4177</spage><epage>4186</epage><pages>4177-4186</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The rapid increase in the volume of data generated from connected devices in industrial Internet of Things paradigm, opens up new possibilities for enhancing the quality of service for the emerging applications through data sharing. However, security and privacy concerns (e.g., data leakage) are major obstacles for data providers to share their data in wireless networks. The leakage of private data can lead to serious issues beyond financial loss for the providers. In this article, we first design a blockchain empowered secure data sharing architecture for distributed multiple parties. Then, we formulate the data sharing problem into a machine-learning problem by incorporating privacy-preserved federated learning. The privacy of data is well-maintained by sharing the data model instead of revealing the actual data. Finally, we integrate federated learning in the consensus process of permissioned blockchain, so that the computing work for consensus can also be used for federated training. Numerical results derived from real-world datasets show that the proposed data sharing scheme achieves good accuracy, high efficiency, and enhanced security.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2942190</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8561-5092</orcidid><orcidid>https://orcid.org/0000-0002-2163-987X</orcidid><orcidid>https://orcid.org/0000-0001-9552-5130</orcidid><orcidid>https://orcid.org/0000-0002-7275-2274</orcidid><orcidid>https://orcid.org/0000-0002-4616-8488</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2020-06, Vol.16 (6), p.4177-4186
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2019_2942190
source IEEE Electronic Library (IEL)
subjects Automation & Control Systems
Blockchain
Collaboration
Computer Science
Computer Science, Interdisciplinary Applications
Cryptography
Data models
Data privacy
Data retrieval
Data sharing
Distributed databases
Electronic devices
Engineering
Engineering, Industrial
Federated learning
Industrial applications
industrial Internet of Things (IIoT)
Information sharing
Internet of Things
Leakage
Machine learning
permissioned blockchain
Privacy
privacy-preserved
Science & Technology
Security
Technology
Wireless networks
title Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blockchain%20and%20Federated%20Learning%20for%20Privacy-Preserved%20Data%20Sharing%20in%20Industrial%20IoT&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Lu,%20Yunlong&rft.date=2020-06-01&rft.volume=16&rft.issue=6&rft.spage=4177&rft.epage=4186&rft.pages=4177-4186&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2942190&rft_dat=%3Cproquest_RIE%3E2374736403%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374736403&rft_id=info:pmid/&rft_ieee_id=8843900&rfr_iscdi=true