Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT
The rapid increase in the volume of data generated from connected devices in industrial Internet of Things paradigm, opens up new possibilities for enhancing the quality of service for the emerging applications through data sharing. However, security and privacy concerns (e.g., data leakage) are maj...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2020-06, Vol.16 (6), p.4177-4186 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4186 |
---|---|
container_issue | 6 |
container_start_page | 4177 |
container_title | IEEE transactions on industrial informatics |
container_volume | 16 |
creator | Lu, Yunlong Huang, Xiaohong Dai, Yueyue Maharjan, Sabita Zhang, Yan |
description | The rapid increase in the volume of data generated from connected devices in industrial Internet of Things paradigm, opens up new possibilities for enhancing the quality of service for the emerging applications through data sharing. However, security and privacy concerns (e.g., data leakage) are major obstacles for data providers to share their data in wireless networks. The leakage of private data can lead to serious issues beyond financial loss for the providers. In this article, we first design a blockchain empowered secure data sharing architecture for distributed multiple parties. Then, we formulate the data sharing problem into a machine-learning problem by incorporating privacy-preserved federated learning. The privacy of data is well-maintained by sharing the data model instead of revealing the actual data. Finally, we integrate federated learning in the consensus process of permissioned blockchain, so that the computing work for consensus can also be used for federated training. Numerical results derived from real-world datasets show that the proposed data sharing scheme achieves good accuracy, high efficiency, and enhanced security. |
doi_str_mv | 10.1109/TII.2019.2942190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2019_2942190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8843900</ieee_id><sourcerecordid>2374736403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-67a907d5e194c3bb04beb9ff5b47b498397bb905a682c472a52d31e4601252113</originalsourceid><addsrcrecordid>eNqNkctKAzEUQAdRsFb3gpsBlzL15jGPLLVaHShYsLodkswdjdakJtOKf29qRbeuciHnJOEkSY4JjAgBcT6v6xEFIkZUcEoE7CQDIjjJAHLYjXOek4xRYPvJQQgvAKwEJgbJ4-XC6Vf9LI1NpW3TCbboZY9tOkXprbFPaed8OvNmLfVnNvMY0K_j9pXsZXr_LP0GiXJt21XovZGLtHbzw2Svk4uARz_rMHmYXM_Ht9n07qYeX0wzzYH3WVFKAWWbY3yqZkoBV6hE1-WKl4qLiolSKQG5LCqqeUllTltGkBdAaE4JYcPkdHvu0rv3FYa-eXErb-OVDWUlL1nBgUUKtpT2LgSPXbP05k36z4ZAs6nXxHrNpl7zUy8qZ1vlA5XrgjZoNf5qEKvSglWk-p4iXf2fHpte9sbZsVvZPqonW9Ug_ilVxZmIn_QFM8SKHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374736403</pqid></control><display><type>article</type><title>Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Yunlong ; Huang, Xiaohong ; Dai, Yueyue ; Maharjan, Sabita ; Zhang, Yan</creator><creatorcontrib>Lu, Yunlong ; Huang, Xiaohong ; Dai, Yueyue ; Maharjan, Sabita ; Zhang, Yan</creatorcontrib><description>The rapid increase in the volume of data generated from connected devices in industrial Internet of Things paradigm, opens up new possibilities for enhancing the quality of service for the emerging applications through data sharing. However, security and privacy concerns (e.g., data leakage) are major obstacles for data providers to share their data in wireless networks. The leakage of private data can lead to serious issues beyond financial loss for the providers. In this article, we first design a blockchain empowered secure data sharing architecture for distributed multiple parties. Then, we formulate the data sharing problem into a machine-learning problem by incorporating privacy-preserved federated learning. The privacy of data is well-maintained by sharing the data model instead of revealing the actual data. Finally, we integrate federated learning in the consensus process of permissioned blockchain, so that the computing work for consensus can also be used for federated training. Numerical results derived from real-world datasets show that the proposed data sharing scheme achieves good accuracy, high efficiency, and enhanced security.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2942190</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Automation & Control Systems ; Blockchain ; Collaboration ; Computer Science ; Computer Science, Interdisciplinary Applications ; Cryptography ; Data models ; Data privacy ; Data retrieval ; Data sharing ; Distributed databases ; Electronic devices ; Engineering ; Engineering, Industrial ; Federated learning ; Industrial applications ; industrial Internet of Things (IIoT) ; Information sharing ; Internet of Things ; Leakage ; Machine learning ; permissioned blockchain ; Privacy ; privacy-preserved ; Science & Technology ; Security ; Technology ; Wireless networks</subject><ispartof>IEEE transactions on industrial informatics, 2020-06, Vol.16 (6), p.4177-4186</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>671</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526381800052</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c404t-67a907d5e194c3bb04beb9ff5b47b498397bb905a682c472a52d31e4601252113</citedby><cites>FETCH-LOGICAL-c404t-67a907d5e194c3bb04beb9ff5b47b498397bb905a682c472a52d31e4601252113</cites><orcidid>0000-0002-8561-5092 ; 0000-0002-2163-987X ; 0000-0001-9552-5130 ; 0000-0002-7275-2274 ; 0000-0002-4616-8488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8843900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,28253,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8843900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Yunlong</creatorcontrib><creatorcontrib>Huang, Xiaohong</creatorcontrib><creatorcontrib>Dai, Yueyue</creatorcontrib><creatorcontrib>Maharjan, Sabita</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><title>Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><addtitle>IEEE T IND INFORM</addtitle><description>The rapid increase in the volume of data generated from connected devices in industrial Internet of Things paradigm, opens up new possibilities for enhancing the quality of service for the emerging applications through data sharing. However, security and privacy concerns (e.g., data leakage) are major obstacles for data providers to share their data in wireless networks. The leakage of private data can lead to serious issues beyond financial loss for the providers. In this article, we first design a blockchain empowered secure data sharing architecture for distributed multiple parties. Then, we formulate the data sharing problem into a machine-learning problem by incorporating privacy-preserved federated learning. The privacy of data is well-maintained by sharing the data model instead of revealing the actual data. Finally, we integrate federated learning in the consensus process of permissioned blockchain, so that the computing work for consensus can also be used for federated training. Numerical results derived from real-world datasets show that the proposed data sharing scheme achieves good accuracy, high efficiency, and enhanced security.</description><subject>Automation & Control Systems</subject><subject>Blockchain</subject><subject>Collaboration</subject><subject>Computer Science</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Cryptography</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Data retrieval</subject><subject>Data sharing</subject><subject>Distributed databases</subject><subject>Electronic devices</subject><subject>Engineering</subject><subject>Engineering, Industrial</subject><subject>Federated learning</subject><subject>Industrial applications</subject><subject>industrial Internet of Things (IIoT)</subject><subject>Information sharing</subject><subject>Internet of Things</subject><subject>Leakage</subject><subject>Machine learning</subject><subject>permissioned blockchain</subject><subject>Privacy</subject><subject>privacy-preserved</subject><subject>Science & Technology</subject><subject>Security</subject><subject>Technology</subject><subject>Wireless networks</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkctKAzEUQAdRsFb3gpsBlzL15jGPLLVaHShYsLodkswdjdakJtOKf29qRbeuciHnJOEkSY4JjAgBcT6v6xEFIkZUcEoE7CQDIjjJAHLYjXOek4xRYPvJQQgvAKwEJgbJ4-XC6Vf9LI1NpW3TCbboZY9tOkXprbFPaed8OvNmLfVnNvMY0K_j9pXsZXr_LP0GiXJt21XovZGLtHbzw2Svk4uARz_rMHmYXM_Ht9n07qYeX0wzzYH3WVFKAWWbY3yqZkoBV6hE1-WKl4qLiolSKQG5LCqqeUllTltGkBdAaE4JYcPkdHvu0rv3FYa-eXErb-OVDWUlL1nBgUUKtpT2LgSPXbP05k36z4ZAs6nXxHrNpl7zUy8qZ1vlA5XrgjZoNf5qEKvSglWk-p4iXf2fHpte9sbZsVvZPqonW9Ug_ilVxZmIn_QFM8SKHA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Lu, Yunlong</creator><creator>Huang, Xiaohong</creator><creator>Dai, Yueyue</creator><creator>Maharjan, Sabita</creator><creator>Zhang, Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8561-5092</orcidid><orcidid>https://orcid.org/0000-0002-2163-987X</orcidid><orcidid>https://orcid.org/0000-0001-9552-5130</orcidid><orcidid>https://orcid.org/0000-0002-7275-2274</orcidid><orcidid>https://orcid.org/0000-0002-4616-8488</orcidid></search><sort><creationdate>20200601</creationdate><title>Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT</title><author>Lu, Yunlong ; Huang, Xiaohong ; Dai, Yueyue ; Maharjan, Sabita ; Zhang, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-67a907d5e194c3bb04beb9ff5b47b498397bb905a682c472a52d31e4601252113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation & Control Systems</topic><topic>Blockchain</topic><topic>Collaboration</topic><topic>Computer Science</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Cryptography</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Data retrieval</topic><topic>Data sharing</topic><topic>Distributed databases</topic><topic>Electronic devices</topic><topic>Engineering</topic><topic>Engineering, Industrial</topic><topic>Federated learning</topic><topic>Industrial applications</topic><topic>industrial Internet of Things (IIoT)</topic><topic>Information sharing</topic><topic>Internet of Things</topic><topic>Leakage</topic><topic>Machine learning</topic><topic>permissioned blockchain</topic><topic>Privacy</topic><topic>privacy-preserved</topic><topic>Science & Technology</topic><topic>Security</topic><topic>Technology</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yunlong</creatorcontrib><creatorcontrib>Huang, Xiaohong</creatorcontrib><creatorcontrib>Dai, Yueyue</creatorcontrib><creatorcontrib>Maharjan, Sabita</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Yunlong</au><au>Huang, Xiaohong</au><au>Dai, Yueyue</au><au>Maharjan, Sabita</au><au>Zhang, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><stitle>IEEE T IND INFORM</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>16</volume><issue>6</issue><spage>4177</spage><epage>4186</epage><pages>4177-4186</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The rapid increase in the volume of data generated from connected devices in industrial Internet of Things paradigm, opens up new possibilities for enhancing the quality of service for the emerging applications through data sharing. However, security and privacy concerns (e.g., data leakage) are major obstacles for data providers to share their data in wireless networks. The leakage of private data can lead to serious issues beyond financial loss for the providers. In this article, we first design a blockchain empowered secure data sharing architecture for distributed multiple parties. Then, we formulate the data sharing problem into a machine-learning problem by incorporating privacy-preserved federated learning. The privacy of data is well-maintained by sharing the data model instead of revealing the actual data. Finally, we integrate federated learning in the consensus process of permissioned blockchain, so that the computing work for consensus can also be used for federated training. Numerical results derived from real-world datasets show that the proposed data sharing scheme achieves good accuracy, high efficiency, and enhanced security.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2942190</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8561-5092</orcidid><orcidid>https://orcid.org/0000-0002-2163-987X</orcidid><orcidid>https://orcid.org/0000-0001-9552-5130</orcidid><orcidid>https://orcid.org/0000-0002-7275-2274</orcidid><orcidid>https://orcid.org/0000-0002-4616-8488</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2020-06, Vol.16 (6), p.4177-4186 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2019_2942190 |
source | IEEE Electronic Library (IEL) |
subjects | Automation & Control Systems Blockchain Collaboration Computer Science Computer Science, Interdisciplinary Applications Cryptography Data models Data privacy Data retrieval Data sharing Distributed databases Electronic devices Engineering Engineering, Industrial Federated learning Industrial applications industrial Internet of Things (IIoT) Information sharing Internet of Things Leakage Machine learning permissioned blockchain Privacy privacy-preserved Science & Technology Security Technology Wireless networks |
title | Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blockchain%20and%20Federated%20Learning%20for%20Privacy-Preserved%20Data%20Sharing%20in%20Industrial%20IoT&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Lu,%20Yunlong&rft.date=2020-06-01&rft.volume=16&rft.issue=6&rft.spage=4177&rft.epage=4186&rft.pages=4177-4186&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2942190&rft_dat=%3Cproquest_RIE%3E2374736403%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374736403&rft_id=info:pmid/&rft_ieee_id=8843900&rfr_iscdi=true |