A Small-Sample Wind Turbine Fault Detection Method With Synthetic Fault Data Using Generative Adversarial Nets

The limited fault information caused by small fault data samples is a major problem in wind turbine (WT) fault detection. This paper proposes a small-sample WT fault detection method with the synthetic fault data using generative adversarial nets (GANs). First, based on prior knowledge, a rough faul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2019-07, Vol.15 (7), p.3877-3888
Hauptverfasser: Liu, Jinhai, Qu, Fuming, Hong, Xiaowei, Zhang, Huaguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3888
container_issue 7
container_start_page 3877
container_title IEEE transactions on industrial informatics
container_volume 15
creator Liu, Jinhai
Qu, Fuming
Hong, Xiaowei
Zhang, Huaguang
description The limited fault information caused by small fault data samples is a major problem in wind turbine (WT) fault detection. This paper proposes a small-sample WT fault detection method with the synthetic fault data using generative adversarial nets (GANs). First, based on prior knowledge, a rough fault data generation process is developed to transform the normal data to the rough fault data. Second, a rough fault data refiner is developed by GANs to make the rough fault data more similar with the real fault data. Moreover, to make the generated data better suited to the WT conditions, GANs are improved in both the generative model and the discriminative model. Third, artificial intelligence (AI)-based WT fault detection models can be well trained by using only the generated data in the condition of small fault data sample. Finally, three groups of generated data evaluation experiments and four groups of WT fault detection comparative experiments are conducted using real WT data collected from a wind farm in northern China. The results indicate that the method proposed in this paper is effective.
doi_str_mv 10.1109/TII.2018.2885365
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2018_2885365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8565906</ieee_id><sourcerecordid>2253469760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2e4c1529b6cf997529a12e6b6b5478f62c2f215a524fe58aaf33fa581f2b36743</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYjuTdw0cT3Yx7QzXRIUJPGxAOKy6Qy3UjJ0sC0k_HuHgK7uWXzn3ORD6J6SAaVEPc2n0wEjtBywshRcigvUoyqnGSGCXHZZCJpxRvg1uolxTQgvCFc95Id4tjFNk83MZtsA_nJ-iee7UDkPeGx2TcLPkKBOrvX4HdKqXXZMWuHZwacVJFf_USYZvIjOf-MJeAgmuT3g4XIPIZrgTIM_IMVbdGVNE-HufPtoMX6Zj16zt8_JdDR8y2qmaMoY5DUVTFWytkoVXTKUgaxkJfKitJLVzDIqjGC5BVEaYzm3RpTUsorLIud99Hja3Yb2Zwcx6XW7C757qRkTPJeqkKSjyImqQxtjAKu3wW1MOGhK9NGq7qzqo1V9ttpVHk4VBwD_eCmkUETyXw8Ecp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253469760</pqid></control><display><type>article</type><title>A Small-Sample Wind Turbine Fault Detection Method With Synthetic Fault Data Using Generative Adversarial Nets</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jinhai ; Qu, Fuming ; Hong, Xiaowei ; Zhang, Huaguang</creator><creatorcontrib>Liu, Jinhai ; Qu, Fuming ; Hong, Xiaowei ; Zhang, Huaguang</creatorcontrib><description>The limited fault information caused by small fault data samples is a major problem in wind turbine (WT) fault detection. This paper proposes a small-sample WT fault detection method with the synthetic fault data using generative adversarial nets (GANs). First, based on prior knowledge, a rough fault data generation process is developed to transform the normal data to the rough fault data. Second, a rough fault data refiner is developed by GANs to make the rough fault data more similar with the real fault data. Moreover, to make the generated data better suited to the WT conditions, GANs are improved in both the generative model and the discriminative model. Third, artificial intelligence (AI)-based WT fault detection models can be well trained by using only the generated data in the condition of small fault data sample. Finally, three groups of generated data evaluation experiments and four groups of WT fault detection comparative experiments are conducted using real WT data collected from a wind farm in northern China. The results indicate that the method proposed in this paper is effective.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2885365</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Correlation ; Data models ; Fault detection ; Gallium nitride ; generative adversarial nets (GANs) ; small sample ; Smoothing methods ; supervisory control and data acquisition (SCADA) data ; Training ; Wind power ; wind turbine (WT) ; Wind turbines</subject><ispartof>IEEE transactions on industrial informatics, 2019-07, Vol.15 (7), p.3877-3888</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2e4c1529b6cf997529a12e6b6b5478f62c2f215a524fe58aaf33fa581f2b36743</citedby><cites>FETCH-LOGICAL-c291t-2e4c1529b6cf997529a12e6b6b5478f62c2f215a524fe58aaf33fa581f2b36743</cites><orcidid>0000-0003-1940-9087 ; 0000-0002-1256-1337 ; 0000-0002-8072-9568 ; 0000-0002-2375-9824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8565906$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8565906$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jinhai</creatorcontrib><creatorcontrib>Qu, Fuming</creatorcontrib><creatorcontrib>Hong, Xiaowei</creatorcontrib><creatorcontrib>Zhang, Huaguang</creatorcontrib><title>A Small-Sample Wind Turbine Fault Detection Method With Synthetic Fault Data Using Generative Adversarial Nets</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The limited fault information caused by small fault data samples is a major problem in wind turbine (WT) fault detection. This paper proposes a small-sample WT fault detection method with the synthetic fault data using generative adversarial nets (GANs). First, based on prior knowledge, a rough fault data generation process is developed to transform the normal data to the rough fault data. Second, a rough fault data refiner is developed by GANs to make the rough fault data more similar with the real fault data. Moreover, to make the generated data better suited to the WT conditions, GANs are improved in both the generative model and the discriminative model. Third, artificial intelligence (AI)-based WT fault detection models can be well trained by using only the generated data in the condition of small fault data sample. Finally, three groups of generated data evaluation experiments and four groups of WT fault detection comparative experiments are conducted using real WT data collected from a wind farm in northern China. The results indicate that the method proposed in this paper is effective.</description><subject>Artificial intelligence</subject><subject>Correlation</subject><subject>Data models</subject><subject>Fault detection</subject><subject>Gallium nitride</subject><subject>generative adversarial nets (GANs)</subject><subject>small sample</subject><subject>Smoothing methods</subject><subject>supervisory control and data acquisition (SCADA) data</subject><subject>Training</subject><subject>Wind power</subject><subject>wind turbine (WT)</subject><subject>Wind turbines</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhRujiYjuTdw0cT3Yx7QzXRIUJPGxAOKy6Qy3UjJ0sC0k_HuHgK7uWXzn3ORD6J6SAaVEPc2n0wEjtBywshRcigvUoyqnGSGCXHZZCJpxRvg1uolxTQgvCFc95Id4tjFNk83MZtsA_nJ-iee7UDkPeGx2TcLPkKBOrvX4HdKqXXZMWuHZwacVJFf_USYZvIjOf-MJeAgmuT3g4XIPIZrgTIM_IMVbdGVNE-HufPtoMX6Zj16zt8_JdDR8y2qmaMoY5DUVTFWytkoVXTKUgaxkJfKitJLVzDIqjGC5BVEaYzm3RpTUsorLIud99Hja3Yb2Zwcx6XW7C757qRkTPJeqkKSjyImqQxtjAKu3wW1MOGhK9NGq7qzqo1V9ttpVHk4VBwD_eCmkUETyXw8Ecp0</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Liu, Jinhai</creator><creator>Qu, Fuming</creator><creator>Hong, Xiaowei</creator><creator>Zhang, Huaguang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1940-9087</orcidid><orcidid>https://orcid.org/0000-0002-1256-1337</orcidid><orcidid>https://orcid.org/0000-0002-8072-9568</orcidid><orcidid>https://orcid.org/0000-0002-2375-9824</orcidid></search><sort><creationdate>20190701</creationdate><title>A Small-Sample Wind Turbine Fault Detection Method With Synthetic Fault Data Using Generative Adversarial Nets</title><author>Liu, Jinhai ; Qu, Fuming ; Hong, Xiaowei ; Zhang, Huaguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2e4c1529b6cf997529a12e6b6b5478f62c2f215a524fe58aaf33fa581f2b36743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Correlation</topic><topic>Data models</topic><topic>Fault detection</topic><topic>Gallium nitride</topic><topic>generative adversarial nets (GANs)</topic><topic>small sample</topic><topic>Smoothing methods</topic><topic>supervisory control and data acquisition (SCADA) data</topic><topic>Training</topic><topic>Wind power</topic><topic>wind turbine (WT)</topic><topic>Wind turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jinhai</creatorcontrib><creatorcontrib>Qu, Fuming</creatorcontrib><creatorcontrib>Hong, Xiaowei</creatorcontrib><creatorcontrib>Zhang, Huaguang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jinhai</au><au>Qu, Fuming</au><au>Hong, Xiaowei</au><au>Zhang, Huaguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Small-Sample Wind Turbine Fault Detection Method With Synthetic Fault Data Using Generative Adversarial Nets</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>15</volume><issue>7</issue><spage>3877</spage><epage>3888</epage><pages>3877-3888</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The limited fault information caused by small fault data samples is a major problem in wind turbine (WT) fault detection. This paper proposes a small-sample WT fault detection method with the synthetic fault data using generative adversarial nets (GANs). First, based on prior knowledge, a rough fault data generation process is developed to transform the normal data to the rough fault data. Second, a rough fault data refiner is developed by GANs to make the rough fault data more similar with the real fault data. Moreover, to make the generated data better suited to the WT conditions, GANs are improved in both the generative model and the discriminative model. Third, artificial intelligence (AI)-based WT fault detection models can be well trained by using only the generated data in the condition of small fault data sample. Finally, three groups of generated data evaluation experiments and four groups of WT fault detection comparative experiments are conducted using real WT data collected from a wind farm in northern China. The results indicate that the method proposed in this paper is effective.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2885365</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1940-9087</orcidid><orcidid>https://orcid.org/0000-0002-1256-1337</orcidid><orcidid>https://orcid.org/0000-0002-8072-9568</orcidid><orcidid>https://orcid.org/0000-0002-2375-9824</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2019-07, Vol.15 (7), p.3877-3888
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2018_2885365
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Correlation
Data models
Fault detection
Gallium nitride
generative adversarial nets (GANs)
small sample
Smoothing methods
supervisory control and data acquisition (SCADA) data
Training
Wind power
wind turbine (WT)
Wind turbines
title A Small-Sample Wind Turbine Fault Detection Method With Synthetic Fault Data Using Generative Adversarial Nets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Small-Sample%20Wind%20Turbine%20Fault%20Detection%20Method%20With%20Synthetic%20Fault%20Data%20Using%20Generative%20Adversarial%20Nets&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Jinhai&rft.date=2019-07-01&rft.volume=15&rft.issue=7&rft.spage=3877&rft.epage=3888&rft.pages=3877-3888&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2885365&rft_dat=%3Cproquest_RIE%3E2253469760%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253469760&rft_id=info:pmid/&rft_ieee_id=8565906&rfr_iscdi=true