A Small-Sample Wind Turbine Fault Detection Method With Synthetic Fault Data Using Generative Adversarial Nets
The limited fault information caused by small fault data samples is a major problem in wind turbine (WT) fault detection. This paper proposes a small-sample WT fault detection method with the synthetic fault data using generative adversarial nets (GANs). First, based on prior knowledge, a rough faul...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2019-07, Vol.15 (7), p.3877-3888 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3888 |
---|---|
container_issue | 7 |
container_start_page | 3877 |
container_title | IEEE transactions on industrial informatics |
container_volume | 15 |
creator | Liu, Jinhai Qu, Fuming Hong, Xiaowei Zhang, Huaguang |
description | The limited fault information caused by small fault data samples is a major problem in wind turbine (WT) fault detection. This paper proposes a small-sample WT fault detection method with the synthetic fault data using generative adversarial nets (GANs). First, based on prior knowledge, a rough fault data generation process is developed to transform the normal data to the rough fault data. Second, a rough fault data refiner is developed by GANs to make the rough fault data more similar with the real fault data. Moreover, to make the generated data better suited to the WT conditions, GANs are improved in both the generative model and the discriminative model. Third, artificial intelligence (AI)-based WT fault detection models can be well trained by using only the generated data in the condition of small fault data sample. Finally, three groups of generated data evaluation experiments and four groups of WT fault detection comparative experiments are conducted using real WT data collected from a wind farm in northern China. The results indicate that the method proposed in this paper is effective. |
doi_str_mv | 10.1109/TII.2018.2885365 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2018_2885365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8565906</ieee_id><sourcerecordid>2253469760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2e4c1529b6cf997529a12e6b6b5478f62c2f215a524fe58aaf33fa581f2b36743</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYjuTdw0cT3Yx7QzXRIUJPGxAOKy6Qy3UjJ0sC0k_HuHgK7uWXzn3ORD6J6SAaVEPc2n0wEjtBywshRcigvUoyqnGSGCXHZZCJpxRvg1uolxTQgvCFc95Id4tjFNk83MZtsA_nJ-iee7UDkPeGx2TcLPkKBOrvX4HdKqXXZMWuHZwacVJFf_USYZvIjOf-MJeAgmuT3g4XIPIZrgTIM_IMVbdGVNE-HufPtoMX6Zj16zt8_JdDR8y2qmaMoY5DUVTFWytkoVXTKUgaxkJfKitJLVzDIqjGC5BVEaYzm3RpTUsorLIud99Hja3Yb2Zwcx6XW7C757qRkTPJeqkKSjyImqQxtjAKu3wW1MOGhK9NGq7qzqo1V9ttpVHk4VBwD_eCmkUETyXw8Ecp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253469760</pqid></control><display><type>article</type><title>A Small-Sample Wind Turbine Fault Detection Method With Synthetic Fault Data Using Generative Adversarial Nets</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jinhai ; Qu, Fuming ; Hong, Xiaowei ; Zhang, Huaguang</creator><creatorcontrib>Liu, Jinhai ; Qu, Fuming ; Hong, Xiaowei ; Zhang, Huaguang</creatorcontrib><description>The limited fault information caused by small fault data samples is a major problem in wind turbine (WT) fault detection. This paper proposes a small-sample WT fault detection method with the synthetic fault data using generative adversarial nets (GANs). First, based on prior knowledge, a rough fault data generation process is developed to transform the normal data to the rough fault data. Second, a rough fault data refiner is developed by GANs to make the rough fault data more similar with the real fault data. Moreover, to make the generated data better suited to the WT conditions, GANs are improved in both the generative model and the discriminative model. Third, artificial intelligence (AI)-based WT fault detection models can be well trained by using only the generated data in the condition of small fault data sample. Finally, three groups of generated data evaluation experiments and four groups of WT fault detection comparative experiments are conducted using real WT data collected from a wind farm in northern China. The results indicate that the method proposed in this paper is effective.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2885365</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Correlation ; Data models ; Fault detection ; Gallium nitride ; generative adversarial nets (GANs) ; small sample ; Smoothing methods ; supervisory control and data acquisition (SCADA) data ; Training ; Wind power ; wind turbine (WT) ; Wind turbines</subject><ispartof>IEEE transactions on industrial informatics, 2019-07, Vol.15 (7), p.3877-3888</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2e4c1529b6cf997529a12e6b6b5478f62c2f215a524fe58aaf33fa581f2b36743</citedby><cites>FETCH-LOGICAL-c291t-2e4c1529b6cf997529a12e6b6b5478f62c2f215a524fe58aaf33fa581f2b36743</cites><orcidid>0000-0003-1940-9087 ; 0000-0002-1256-1337 ; 0000-0002-8072-9568 ; 0000-0002-2375-9824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8565906$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8565906$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jinhai</creatorcontrib><creatorcontrib>Qu, Fuming</creatorcontrib><creatorcontrib>Hong, Xiaowei</creatorcontrib><creatorcontrib>Zhang, Huaguang</creatorcontrib><title>A Small-Sample Wind Turbine Fault Detection Method With Synthetic Fault Data Using Generative Adversarial Nets</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The limited fault information caused by small fault data samples is a major problem in wind turbine (WT) fault detection. This paper proposes a small-sample WT fault detection method with the synthetic fault data using generative adversarial nets (GANs). First, based on prior knowledge, a rough fault data generation process is developed to transform the normal data to the rough fault data. Second, a rough fault data refiner is developed by GANs to make the rough fault data more similar with the real fault data. Moreover, to make the generated data better suited to the WT conditions, GANs are improved in both the generative model and the discriminative model. Third, artificial intelligence (AI)-based WT fault detection models can be well trained by using only the generated data in the condition of small fault data sample. Finally, three groups of generated data evaluation experiments and four groups of WT fault detection comparative experiments are conducted using real WT data collected from a wind farm in northern China. The results indicate that the method proposed in this paper is effective.</description><subject>Artificial intelligence</subject><subject>Correlation</subject><subject>Data models</subject><subject>Fault detection</subject><subject>Gallium nitride</subject><subject>generative adversarial nets (GANs)</subject><subject>small sample</subject><subject>Smoothing methods</subject><subject>supervisory control and data acquisition (SCADA) data</subject><subject>Training</subject><subject>Wind power</subject><subject>wind turbine (WT)</subject><subject>Wind turbines</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhRujiYjuTdw0cT3Yx7QzXRIUJPGxAOKy6Qy3UjJ0sC0k_HuHgK7uWXzn3ORD6J6SAaVEPc2n0wEjtBywshRcigvUoyqnGSGCXHZZCJpxRvg1uolxTQgvCFc95Id4tjFNk83MZtsA_nJ-iee7UDkPeGx2TcLPkKBOrvX4HdKqXXZMWuHZwacVJFf_USYZvIjOf-MJeAgmuT3g4XIPIZrgTIM_IMVbdGVNE-HufPtoMX6Zj16zt8_JdDR8y2qmaMoY5DUVTFWytkoVXTKUgaxkJfKitJLVzDIqjGC5BVEaYzm3RpTUsorLIud99Hja3Yb2Zwcx6XW7C757qRkTPJeqkKSjyImqQxtjAKu3wW1MOGhK9NGq7qzqo1V9ttpVHk4VBwD_eCmkUETyXw8Ecp0</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Liu, Jinhai</creator><creator>Qu, Fuming</creator><creator>Hong, Xiaowei</creator><creator>Zhang, Huaguang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1940-9087</orcidid><orcidid>https://orcid.org/0000-0002-1256-1337</orcidid><orcidid>https://orcid.org/0000-0002-8072-9568</orcidid><orcidid>https://orcid.org/0000-0002-2375-9824</orcidid></search><sort><creationdate>20190701</creationdate><title>A Small-Sample Wind Turbine Fault Detection Method With Synthetic Fault Data Using Generative Adversarial Nets</title><author>Liu, Jinhai ; Qu, Fuming ; Hong, Xiaowei ; Zhang, Huaguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2e4c1529b6cf997529a12e6b6b5478f62c2f215a524fe58aaf33fa581f2b36743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Correlation</topic><topic>Data models</topic><topic>Fault detection</topic><topic>Gallium nitride</topic><topic>generative adversarial nets (GANs)</topic><topic>small sample</topic><topic>Smoothing methods</topic><topic>supervisory control and data acquisition (SCADA) data</topic><topic>Training</topic><topic>Wind power</topic><topic>wind turbine (WT)</topic><topic>Wind turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jinhai</creatorcontrib><creatorcontrib>Qu, Fuming</creatorcontrib><creatorcontrib>Hong, Xiaowei</creatorcontrib><creatorcontrib>Zhang, Huaguang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jinhai</au><au>Qu, Fuming</au><au>Hong, Xiaowei</au><au>Zhang, Huaguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Small-Sample Wind Turbine Fault Detection Method With Synthetic Fault Data Using Generative Adversarial Nets</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>15</volume><issue>7</issue><spage>3877</spage><epage>3888</epage><pages>3877-3888</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The limited fault information caused by small fault data samples is a major problem in wind turbine (WT) fault detection. This paper proposes a small-sample WT fault detection method with the synthetic fault data using generative adversarial nets (GANs). First, based on prior knowledge, a rough fault data generation process is developed to transform the normal data to the rough fault data. Second, a rough fault data refiner is developed by GANs to make the rough fault data more similar with the real fault data. Moreover, to make the generated data better suited to the WT conditions, GANs are improved in both the generative model and the discriminative model. Third, artificial intelligence (AI)-based WT fault detection models can be well trained by using only the generated data in the condition of small fault data sample. Finally, three groups of generated data evaluation experiments and four groups of WT fault detection comparative experiments are conducted using real WT data collected from a wind farm in northern China. The results indicate that the method proposed in this paper is effective.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2885365</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1940-9087</orcidid><orcidid>https://orcid.org/0000-0002-1256-1337</orcidid><orcidid>https://orcid.org/0000-0002-8072-9568</orcidid><orcidid>https://orcid.org/0000-0002-2375-9824</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2019-07, Vol.15 (7), p.3877-3888 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2018_2885365 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Correlation Data models Fault detection Gallium nitride generative adversarial nets (GANs) small sample Smoothing methods supervisory control and data acquisition (SCADA) data Training Wind power wind turbine (WT) Wind turbines |
title | A Small-Sample Wind Turbine Fault Detection Method With Synthetic Fault Data Using Generative Adversarial Nets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Small-Sample%20Wind%20Turbine%20Fault%20Detection%20Method%20With%20Synthetic%20Fault%20Data%20Using%20Generative%20Adversarial%20Nets&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Jinhai&rft.date=2019-07-01&rft.volume=15&rft.issue=7&rft.spage=3877&rft.epage=3888&rft.pages=3877-3888&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2885365&rft_dat=%3Cproquest_RIE%3E2253469760%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253469760&rft_id=info:pmid/&rft_ieee_id=8565906&rfr_iscdi=true |