A Resilient Architecture for the Smart Grid

The smart grid offers many benefits due to the bidirectional communication between the users and the utility company, which makes it possible to perform a fine-grain consumption metering. This can be used for demand response purposes with the generation and delivery of electricity in real time. It i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2018-08, Vol.14 (8), p.3745-3753
Hauptverfasser: Lopez, Javier, Rubio, Juan E., Alcaraz, Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3753
container_issue 8
container_start_page 3745
container_title IEEE transactions on industrial informatics
container_volume 14
creator Lopez, Javier
Rubio, Juan E.
Alcaraz, Cristina
description The smart grid offers many benefits due to the bidirectional communication between the users and the utility company, which makes it possible to perform a fine-grain consumption metering. This can be used for demand response purposes with the generation and delivery of electricity in real time. It is essential to rapidly anticipate high peaks of demand or potential attacks, so as to avoid power outages and denial of service, while effectively supplying consumption areas. In this paper, we propose a novel architecture where cloud computing resources are leveraged (and tested in practice) to enable, on the one hand, the consumption prediction through time-series forecasting, as well as load balancing to uniformly distribute the demand over a set of available generators. On the other hand, it also allows the detection of connectivity losses and intrusions within the control network by using controllability concepts.
doi_str_mv 10.1109/TII.2018.2826226
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2018_2826226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8336978</ieee_id><sourcerecordid>2087766019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-10de408d32418d4973b0dea6eb3266525907ac976c35953e96b36514d6ad06df3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuCR9k6yWy-jqVoXSgIWs9hu5mlW2q3JunBf29Ki6cZhuedGR7G7jlMOAf7vKzriQBuJsIIJYS6YCNuK14CSLjMvZS8RAF4zW5i3ACgBrQj9jQtPij22552qZiGdt0natMhUNENoUhrKj6_m5CKeej9Lbvqmm2ku3Mds6_Xl-XsrVy8z-vZdFG2wvJUcvBUgfEoKm58ZTWu8qRRtEKhlBTSgm5aq1WL0kokq1aoJK-8ajwo3-GYPZ727sPwc6CY3GY4hF0-6QQYrZUCbjMFJ6oNQ4yBOrcPff7113FwRyUuK3FHJe6sJEceTpGeiP5xg6isNvgHHvlZvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087766019</pqid></control><display><type>article</type><title>A Resilient Architecture for the Smart Grid</title><source>IEEE Electronic Library (IEL)</source><creator>Lopez, Javier ; Rubio, Juan E. ; Alcaraz, Cristina</creator><creatorcontrib>Lopez, Javier ; Rubio, Juan E. ; Alcaraz, Cristina</creatorcontrib><description>The smart grid offers many benefits due to the bidirectional communication between the users and the utility company, which makes it possible to perform a fine-grain consumption metering. This can be used for demand response purposes with the generation and delivery of electricity in real time. It is essential to rapidly anticipate high peaks of demand or potential attacks, so as to avoid power outages and denial of service, while effectively supplying consumption areas. In this paper, we propose a novel architecture where cloud computing resources are leveraged (and tested in practice) to enable, on the one hand, the consumption prediction through time-series forecasting, as well as load balancing to uniformly distribute the demand over a set of available generators. On the other hand, it also allows the detection of connectivity losses and intrusions within the control network by using controllability concepts.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2826226</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; Computer architecture ; Control systems ; Controllability ; Cybersecurity ; Denial of service attacks ; Economic forecasting ; Electricity consumption ; fault detection ; Generators ; load balancing ; Load management ; Power consumption ; power dominance ; prediction ; Real-time systems ; resilience ; Safety ; Smart grid ; Smart grids ; Stability ; structural controllability</subject><ispartof>IEEE transactions on industrial informatics, 2018-08, Vol.14 (8), p.3745-3753</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-10de408d32418d4973b0dea6eb3266525907ac976c35953e96b36514d6ad06df3</citedby><cites>FETCH-LOGICAL-c291t-10de408d32418d4973b0dea6eb3266525907ac976c35953e96b36514d6ad06df3</cites><orcidid>0000-0002-7338-9390 ; 0000-0003-0545-3191 ; 0000-0001-8066-9991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8336978$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8336978$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lopez, Javier</creatorcontrib><creatorcontrib>Rubio, Juan E.</creatorcontrib><creatorcontrib>Alcaraz, Cristina</creatorcontrib><title>A Resilient Architecture for the Smart Grid</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The smart grid offers many benefits due to the bidirectional communication between the users and the utility company, which makes it possible to perform a fine-grain consumption metering. This can be used for demand response purposes with the generation and delivery of electricity in real time. It is essential to rapidly anticipate high peaks of demand or potential attacks, so as to avoid power outages and denial of service, while effectively supplying consumption areas. In this paper, we propose a novel architecture where cloud computing resources are leveraged (and tested in practice) to enable, on the one hand, the consumption prediction through time-series forecasting, as well as load balancing to uniformly distribute the demand over a set of available generators. On the other hand, it also allows the detection of connectivity losses and intrusions within the control network by using controllability concepts.</description><subject>Cloud computing</subject><subject>Computer architecture</subject><subject>Control systems</subject><subject>Controllability</subject><subject>Cybersecurity</subject><subject>Denial of service attacks</subject><subject>Economic forecasting</subject><subject>Electricity consumption</subject><subject>fault detection</subject><subject>Generators</subject><subject>load balancing</subject><subject>Load management</subject><subject>Power consumption</subject><subject>power dominance</subject><subject>prediction</subject><subject>Real-time systems</subject><subject>resilience</subject><subject>Safety</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>Stability</subject><subject>structural controllability</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuCR9k6yWy-jqVoXSgIWs9hu5mlW2q3JunBf29Ki6cZhuedGR7G7jlMOAf7vKzriQBuJsIIJYS6YCNuK14CSLjMvZS8RAF4zW5i3ACgBrQj9jQtPij22552qZiGdt0natMhUNENoUhrKj6_m5CKeej9Lbvqmm2ku3Mds6_Xl-XsrVy8z-vZdFG2wvJUcvBUgfEoKm58ZTWu8qRRtEKhlBTSgm5aq1WL0kokq1aoJK-8ajwo3-GYPZ727sPwc6CY3GY4hF0-6QQYrZUCbjMFJ6oNQ4yBOrcPff7113FwRyUuK3FHJe6sJEceTpGeiP5xg6isNvgHHvlZvQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Lopez, Javier</creator><creator>Rubio, Juan E.</creator><creator>Alcaraz, Cristina</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7338-9390</orcidid><orcidid>https://orcid.org/0000-0003-0545-3191</orcidid><orcidid>https://orcid.org/0000-0001-8066-9991</orcidid></search><sort><creationdate>20180801</creationdate><title>A Resilient Architecture for the Smart Grid</title><author>Lopez, Javier ; Rubio, Juan E. ; Alcaraz, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-10de408d32418d4973b0dea6eb3266525907ac976c35953e96b36514d6ad06df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cloud computing</topic><topic>Computer architecture</topic><topic>Control systems</topic><topic>Controllability</topic><topic>Cybersecurity</topic><topic>Denial of service attacks</topic><topic>Economic forecasting</topic><topic>Electricity consumption</topic><topic>fault detection</topic><topic>Generators</topic><topic>load balancing</topic><topic>Load management</topic><topic>Power consumption</topic><topic>power dominance</topic><topic>prediction</topic><topic>Real-time systems</topic><topic>resilience</topic><topic>Safety</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>Stability</topic><topic>structural controllability</topic><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Javier</creatorcontrib><creatorcontrib>Rubio, Juan E.</creatorcontrib><creatorcontrib>Alcaraz, Cristina</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lopez, Javier</au><au>Rubio, Juan E.</au><au>Alcaraz, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Resilient Architecture for the Smart Grid</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>14</volume><issue>8</issue><spage>3745</spage><epage>3753</epage><pages>3745-3753</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The smart grid offers many benefits due to the bidirectional communication between the users and the utility company, which makes it possible to perform a fine-grain consumption metering. This can be used for demand response purposes with the generation and delivery of electricity in real time. It is essential to rapidly anticipate high peaks of demand or potential attacks, so as to avoid power outages and denial of service, while effectively supplying consumption areas. In this paper, we propose a novel architecture where cloud computing resources are leveraged (and tested in practice) to enable, on the one hand, the consumption prediction through time-series forecasting, as well as load balancing to uniformly distribute the demand over a set of available generators. On the other hand, it also allows the detection of connectivity losses and intrusions within the control network by using controllability concepts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2826226</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7338-9390</orcidid><orcidid>https://orcid.org/0000-0003-0545-3191</orcidid><orcidid>https://orcid.org/0000-0001-8066-9991</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2018-08, Vol.14 (8), p.3745-3753
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2018_2826226
source IEEE Electronic Library (IEL)
subjects Cloud computing
Computer architecture
Control systems
Controllability
Cybersecurity
Denial of service attacks
Economic forecasting
Electricity consumption
fault detection
Generators
load balancing
Load management
Power consumption
power dominance
prediction
Real-time systems
resilience
Safety
Smart grid
Smart grids
Stability
structural controllability
title A Resilient Architecture for the Smart Grid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Resilient%20Architecture%20for%20the%20Smart%20Grid&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Lopez,%20Javier&rft.date=2018-08-01&rft.volume=14&rft.issue=8&rft.spage=3745&rft.epage=3753&rft.pages=3745-3753&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2826226&rft_dat=%3Cproquest_RIE%3E2087766019%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087766019&rft_id=info:pmid/&rft_ieee_id=8336978&rfr_iscdi=true