A Resilient Architecture for the Smart Grid
The smart grid offers many benefits due to the bidirectional communication between the users and the utility company, which makes it possible to perform a fine-grain consumption metering. This can be used for demand response purposes with the generation and delivery of electricity in real time. It i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2018-08, Vol.14 (8), p.3745-3753 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3753 |
---|---|
container_issue | 8 |
container_start_page | 3745 |
container_title | IEEE transactions on industrial informatics |
container_volume | 14 |
creator | Lopez, Javier Rubio, Juan E. Alcaraz, Cristina |
description | The smart grid offers many benefits due to the bidirectional communication between the users and the utility company, which makes it possible to perform a fine-grain consumption metering. This can be used for demand response purposes with the generation and delivery of electricity in real time. It is essential to rapidly anticipate high peaks of demand or potential attacks, so as to avoid power outages and denial of service, while effectively supplying consumption areas. In this paper, we propose a novel architecture where cloud computing resources are leveraged (and tested in practice) to enable, on the one hand, the consumption prediction through time-series forecasting, as well as load balancing to uniformly distribute the demand over a set of available generators. On the other hand, it also allows the detection of connectivity losses and intrusions within the control network by using controllability concepts. |
doi_str_mv | 10.1109/TII.2018.2826226 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2018_2826226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8336978</ieee_id><sourcerecordid>2087766019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-10de408d32418d4973b0dea6eb3266525907ac976c35953e96b36514d6ad06df3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuCR9k6yWy-jqVoXSgIWs9hu5mlW2q3JunBf29Ki6cZhuedGR7G7jlMOAf7vKzriQBuJsIIJYS6YCNuK14CSLjMvZS8RAF4zW5i3ACgBrQj9jQtPij22552qZiGdt0natMhUNENoUhrKj6_m5CKeej9Lbvqmm2ku3Mds6_Xl-XsrVy8z-vZdFG2wvJUcvBUgfEoKm58ZTWu8qRRtEKhlBTSgm5aq1WL0kokq1aoJK-8ajwo3-GYPZ727sPwc6CY3GY4hF0-6QQYrZUCbjMFJ6oNQ4yBOrcPff7113FwRyUuK3FHJe6sJEceTpGeiP5xg6isNvgHHvlZvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087766019</pqid></control><display><type>article</type><title>A Resilient Architecture for the Smart Grid</title><source>IEEE Electronic Library (IEL)</source><creator>Lopez, Javier ; Rubio, Juan E. ; Alcaraz, Cristina</creator><creatorcontrib>Lopez, Javier ; Rubio, Juan E. ; Alcaraz, Cristina</creatorcontrib><description>The smart grid offers many benefits due to the bidirectional communication between the users and the utility company, which makes it possible to perform a fine-grain consumption metering. This can be used for demand response purposes with the generation and delivery of electricity in real time. It is essential to rapidly anticipate high peaks of demand or potential attacks, so as to avoid power outages and denial of service, while effectively supplying consumption areas. In this paper, we propose a novel architecture where cloud computing resources are leveraged (and tested in practice) to enable, on the one hand, the consumption prediction through time-series forecasting, as well as load balancing to uniformly distribute the demand over a set of available generators. On the other hand, it also allows the detection of connectivity losses and intrusions within the control network by using controllability concepts.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2826226</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; Computer architecture ; Control systems ; Controllability ; Cybersecurity ; Denial of service attacks ; Economic forecasting ; Electricity consumption ; fault detection ; Generators ; load balancing ; Load management ; Power consumption ; power dominance ; prediction ; Real-time systems ; resilience ; Safety ; Smart grid ; Smart grids ; Stability ; structural controllability</subject><ispartof>IEEE transactions on industrial informatics, 2018-08, Vol.14 (8), p.3745-3753</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-10de408d32418d4973b0dea6eb3266525907ac976c35953e96b36514d6ad06df3</citedby><cites>FETCH-LOGICAL-c291t-10de408d32418d4973b0dea6eb3266525907ac976c35953e96b36514d6ad06df3</cites><orcidid>0000-0002-7338-9390 ; 0000-0003-0545-3191 ; 0000-0001-8066-9991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8336978$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8336978$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lopez, Javier</creatorcontrib><creatorcontrib>Rubio, Juan E.</creatorcontrib><creatorcontrib>Alcaraz, Cristina</creatorcontrib><title>A Resilient Architecture for the Smart Grid</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The smart grid offers many benefits due to the bidirectional communication between the users and the utility company, which makes it possible to perform a fine-grain consumption metering. This can be used for demand response purposes with the generation and delivery of electricity in real time. It is essential to rapidly anticipate high peaks of demand or potential attacks, so as to avoid power outages and denial of service, while effectively supplying consumption areas. In this paper, we propose a novel architecture where cloud computing resources are leveraged (and tested in practice) to enable, on the one hand, the consumption prediction through time-series forecasting, as well as load balancing to uniformly distribute the demand over a set of available generators. On the other hand, it also allows the detection of connectivity losses and intrusions within the control network by using controllability concepts.</description><subject>Cloud computing</subject><subject>Computer architecture</subject><subject>Control systems</subject><subject>Controllability</subject><subject>Cybersecurity</subject><subject>Denial of service attacks</subject><subject>Economic forecasting</subject><subject>Electricity consumption</subject><subject>fault detection</subject><subject>Generators</subject><subject>load balancing</subject><subject>Load management</subject><subject>Power consumption</subject><subject>power dominance</subject><subject>prediction</subject><subject>Real-time systems</subject><subject>resilience</subject><subject>Safety</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>Stability</subject><subject>structural controllability</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuCR9k6yWy-jqVoXSgIWs9hu5mlW2q3JunBf29Ki6cZhuedGR7G7jlMOAf7vKzriQBuJsIIJYS6YCNuK14CSLjMvZS8RAF4zW5i3ACgBrQj9jQtPij22552qZiGdt0natMhUNENoUhrKj6_m5CKeej9Lbvqmm2ku3Mds6_Xl-XsrVy8z-vZdFG2wvJUcvBUgfEoKm58ZTWu8qRRtEKhlBTSgm5aq1WL0kokq1aoJK-8ajwo3-GYPZ727sPwc6CY3GY4hF0-6QQYrZUCbjMFJ6oNQ4yBOrcPff7113FwRyUuK3FHJe6sJEceTpGeiP5xg6isNvgHHvlZvQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Lopez, Javier</creator><creator>Rubio, Juan E.</creator><creator>Alcaraz, Cristina</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7338-9390</orcidid><orcidid>https://orcid.org/0000-0003-0545-3191</orcidid><orcidid>https://orcid.org/0000-0001-8066-9991</orcidid></search><sort><creationdate>20180801</creationdate><title>A Resilient Architecture for the Smart Grid</title><author>Lopez, Javier ; Rubio, Juan E. ; Alcaraz, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-10de408d32418d4973b0dea6eb3266525907ac976c35953e96b36514d6ad06df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cloud computing</topic><topic>Computer architecture</topic><topic>Control systems</topic><topic>Controllability</topic><topic>Cybersecurity</topic><topic>Denial of service attacks</topic><topic>Economic forecasting</topic><topic>Electricity consumption</topic><topic>fault detection</topic><topic>Generators</topic><topic>load balancing</topic><topic>Load management</topic><topic>Power consumption</topic><topic>power dominance</topic><topic>prediction</topic><topic>Real-time systems</topic><topic>resilience</topic><topic>Safety</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>Stability</topic><topic>structural controllability</topic><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Javier</creatorcontrib><creatorcontrib>Rubio, Juan E.</creatorcontrib><creatorcontrib>Alcaraz, Cristina</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lopez, Javier</au><au>Rubio, Juan E.</au><au>Alcaraz, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Resilient Architecture for the Smart Grid</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>14</volume><issue>8</issue><spage>3745</spage><epage>3753</epage><pages>3745-3753</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The smart grid offers many benefits due to the bidirectional communication between the users and the utility company, which makes it possible to perform a fine-grain consumption metering. This can be used for demand response purposes with the generation and delivery of electricity in real time. It is essential to rapidly anticipate high peaks of demand or potential attacks, so as to avoid power outages and denial of service, while effectively supplying consumption areas. In this paper, we propose a novel architecture where cloud computing resources are leveraged (and tested in practice) to enable, on the one hand, the consumption prediction through time-series forecasting, as well as load balancing to uniformly distribute the demand over a set of available generators. On the other hand, it also allows the detection of connectivity losses and intrusions within the control network by using controllability concepts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2826226</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7338-9390</orcidid><orcidid>https://orcid.org/0000-0003-0545-3191</orcidid><orcidid>https://orcid.org/0000-0001-8066-9991</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2018-08, Vol.14 (8), p.3745-3753 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2018_2826226 |
source | IEEE Electronic Library (IEL) |
subjects | Cloud computing Computer architecture Control systems Controllability Cybersecurity Denial of service attacks Economic forecasting Electricity consumption fault detection Generators load balancing Load management Power consumption power dominance prediction Real-time systems resilience Safety Smart grid Smart grids Stability structural controllability |
title | A Resilient Architecture for the Smart Grid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Resilient%20Architecture%20for%20the%20Smart%20Grid&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Lopez,%20Javier&rft.date=2018-08-01&rft.volume=14&rft.issue=8&rft.spage=3745&rft.epage=3753&rft.pages=3745-3753&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2826226&rft_dat=%3Cproquest_RIE%3E2087766019%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087766019&rft_id=info:pmid/&rft_ieee_id=8336978&rfr_iscdi=true |