A Lightweight Autoscaling Mechanism for Fog Computing in Industrial Applications

Fog computing provides a more flexible service environment than cloud computing. The lightweight fog environment is suitable for industrial applications. In order to strengthen service scalability, container virtualization has been proposed and studied in recent years. It is vital to explore the tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2018-10, Vol.14 (10), p.4529-4537
Hauptverfasser: Tseng, Fan-Hsun, Tsai, Ming-Shiun, Tseng, Chia-Wei, Yang, Yao-Tsung, Liu, Chien-Chang, Chou, Li-Der
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4537
container_issue 10
container_start_page 4529
container_title IEEE transactions on industrial informatics
container_volume 14
creator Tseng, Fan-Hsun
Tsai, Ming-Shiun
Tseng, Chia-Wei
Yang, Yao-Tsung
Liu, Chien-Chang
Chou, Li-Der
description Fog computing provides a more flexible service environment than cloud computing. The lightweight fog environment is suitable for industrial applications. In order to strengthen service scalability, container virtualization has been proposed and studied in recent years. It is vital to explore the tradeoff between service scalability and operating expenses. This paper integrates the hypervisor technique with container virtualization, and constructs an integrated virtualization (IV) fog platform for deploying industrial applications based on the virtual network function. This paper presents a fuzzy-based real-time autoscaling (FRAS) mechanism and implements it in the IV fog platform. The FRAS mechanism provides a dynamic, rapid, lightweight, and low-cost solution to the service autoscaling problem. Experimental results showed that the proposed FRAS mechanism yields a better service scale with lower average delay, error rate, and operating expenses compared to other autoscaling schemes.
doi_str_mv 10.1109/TII.2018.2799230
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2018_2799230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8272512</ieee_id><sourcerecordid>2117187976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-1eb8244a748376747b08c06c9e68919f38338456353066717f6b2731a27de36e3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6kzu8l-HEPxI1DRQz0v23TTbkmzMZsg_nsTWrzMDMzzzsBDyD3CAhH007ooFgxQLZjUmnG4IDPUKSYAGVyOc5Zhwhnwa3IT4wGAS-B6Rj5zuvK7ff_jpkrzoQ-xtLVvdvTdlXvb-HikVejoS9jRZTi2Qz_tfEOLZjvEvvO2pnnb1r60vQ9NvCVXla2juzv3Ofl6eV4v35LVx2uxzFdJyTPZJ-g2iqWplaniUshUbkCVIErthNKoK644V2kmeMZBCImyEhsmOVomt44Lx-fk8XS37cL34GJvDmHomvGlYYgSldRSjBScqLILMXauMm3nj7b7NQhm8mZGb2byZs7exsjDKeKdc_-4YpJlyPgfJeBnFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117187976</pqid></control><display><type>article</type><title>A Lightweight Autoscaling Mechanism for Fog Computing in Industrial Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Tseng, Fan-Hsun ; Tsai, Ming-Shiun ; Tseng, Chia-Wei ; Yang, Yao-Tsung ; Liu, Chien-Chang ; Chou, Li-Der</creator><creatorcontrib>Tseng, Fan-Hsun ; Tsai, Ming-Shiun ; Tseng, Chia-Wei ; Yang, Yao-Tsung ; Liu, Chien-Chang ; Chou, Li-Der</creatorcontrib><description>Fog computing provides a more flexible service environment than cloud computing. The lightweight fog environment is suitable for industrial applications. In order to strengthen service scalability, container virtualization has been proposed and studied in recent years. It is vital to explore the tradeoff between service scalability and operating expenses. This paper integrates the hypervisor technique with container virtualization, and constructs an integrated virtualization (IV) fog platform for deploying industrial applications based on the virtual network function. This paper presents a fuzzy-based real-time autoscaling (FRAS) mechanism and implements it in the IV fog platform. The FRAS mechanism provides a dynamic, rapid, lightweight, and low-cost solution to the service autoscaling problem. Experimental results showed that the proposed FRAS mechanism yields a better service scale with lower average delay, error rate, and operating expenses compared to other autoscaling schemes.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2799230</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autoscaling ; Cloud computing ; Computer architecture ; container virtualization ; Containers ; Costs ; fog computing ; fuzzy theory ; Industrial applications ; Libraries ; Lightweight ; Scalability ; Virtual machine monitors ; virtual network function (VNF) ; Virtualization ; Weight reduction</subject><ispartof>IEEE transactions on industrial informatics, 2018-10, Vol.14 (10), p.4529-4537</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-1eb8244a748376747b08c06c9e68919f38338456353066717f6b2731a27de36e3</citedby><cites>FETCH-LOGICAL-c357t-1eb8244a748376747b08c06c9e68919f38338456353066717f6b2731a27de36e3</cites><orcidid>0000-0003-2461-8377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8272512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8272512$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tseng, Fan-Hsun</creatorcontrib><creatorcontrib>Tsai, Ming-Shiun</creatorcontrib><creatorcontrib>Tseng, Chia-Wei</creatorcontrib><creatorcontrib>Yang, Yao-Tsung</creatorcontrib><creatorcontrib>Liu, Chien-Chang</creatorcontrib><creatorcontrib>Chou, Li-Der</creatorcontrib><title>A Lightweight Autoscaling Mechanism for Fog Computing in Industrial Applications</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Fog computing provides a more flexible service environment than cloud computing. The lightweight fog environment is suitable for industrial applications. In order to strengthen service scalability, container virtualization has been proposed and studied in recent years. It is vital to explore the tradeoff between service scalability and operating expenses. This paper integrates the hypervisor technique with container virtualization, and constructs an integrated virtualization (IV) fog platform for deploying industrial applications based on the virtual network function. This paper presents a fuzzy-based real-time autoscaling (FRAS) mechanism and implements it in the IV fog platform. The FRAS mechanism provides a dynamic, rapid, lightweight, and low-cost solution to the service autoscaling problem. Experimental results showed that the proposed FRAS mechanism yields a better service scale with lower average delay, error rate, and operating expenses compared to other autoscaling schemes.</description><subject>Autoscaling</subject><subject>Cloud computing</subject><subject>Computer architecture</subject><subject>container virtualization</subject><subject>Containers</subject><subject>Costs</subject><subject>fog computing</subject><subject>fuzzy theory</subject><subject>Industrial applications</subject><subject>Libraries</subject><subject>Lightweight</subject><subject>Scalability</subject><subject>Virtual machine monitors</subject><subject>virtual network function (VNF)</subject><subject>Virtualization</subject><subject>Weight reduction</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6kzu8l-HEPxI1DRQz0v23TTbkmzMZsg_nsTWrzMDMzzzsBDyD3CAhH007ooFgxQLZjUmnG4IDPUKSYAGVyOc5Zhwhnwa3IT4wGAS-B6Rj5zuvK7ff_jpkrzoQ-xtLVvdvTdlXvb-HikVejoS9jRZTi2Qz_tfEOLZjvEvvO2pnnb1r60vQ9NvCVXla2juzv3Ofl6eV4v35LVx2uxzFdJyTPZJ-g2iqWplaniUshUbkCVIErthNKoK644V2kmeMZBCImyEhsmOVomt44Lx-fk8XS37cL34GJvDmHomvGlYYgSldRSjBScqLILMXauMm3nj7b7NQhm8mZGb2byZs7exsjDKeKdc_-4YpJlyPgfJeBnFw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Tseng, Fan-Hsun</creator><creator>Tsai, Ming-Shiun</creator><creator>Tseng, Chia-Wei</creator><creator>Yang, Yao-Tsung</creator><creator>Liu, Chien-Chang</creator><creator>Chou, Li-Der</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2461-8377</orcidid></search><sort><creationdate>20181001</creationdate><title>A Lightweight Autoscaling Mechanism for Fog Computing in Industrial Applications</title><author>Tseng, Fan-Hsun ; Tsai, Ming-Shiun ; Tseng, Chia-Wei ; Yang, Yao-Tsung ; Liu, Chien-Chang ; Chou, Li-Der</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-1eb8244a748376747b08c06c9e68919f38338456353066717f6b2731a27de36e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Autoscaling</topic><topic>Cloud computing</topic><topic>Computer architecture</topic><topic>container virtualization</topic><topic>Containers</topic><topic>Costs</topic><topic>fog computing</topic><topic>fuzzy theory</topic><topic>Industrial applications</topic><topic>Libraries</topic><topic>Lightweight</topic><topic>Scalability</topic><topic>Virtual machine monitors</topic><topic>virtual network function (VNF)</topic><topic>Virtualization</topic><topic>Weight reduction</topic><toplevel>online_resources</toplevel><creatorcontrib>Tseng, Fan-Hsun</creatorcontrib><creatorcontrib>Tsai, Ming-Shiun</creatorcontrib><creatorcontrib>Tseng, Chia-Wei</creatorcontrib><creatorcontrib>Yang, Yao-Tsung</creatorcontrib><creatorcontrib>Liu, Chien-Chang</creatorcontrib><creatorcontrib>Chou, Li-Der</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tseng, Fan-Hsun</au><au>Tsai, Ming-Shiun</au><au>Tseng, Chia-Wei</au><au>Yang, Yao-Tsung</au><au>Liu, Chien-Chang</au><au>Chou, Li-Der</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lightweight Autoscaling Mechanism for Fog Computing in Industrial Applications</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>14</volume><issue>10</issue><spage>4529</spage><epage>4537</epage><pages>4529-4537</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Fog computing provides a more flexible service environment than cloud computing. The lightweight fog environment is suitable for industrial applications. In order to strengthen service scalability, container virtualization has been proposed and studied in recent years. It is vital to explore the tradeoff between service scalability and operating expenses. This paper integrates the hypervisor technique with container virtualization, and constructs an integrated virtualization (IV) fog platform for deploying industrial applications based on the virtual network function. This paper presents a fuzzy-based real-time autoscaling (FRAS) mechanism and implements it in the IV fog platform. The FRAS mechanism provides a dynamic, rapid, lightweight, and low-cost solution to the service autoscaling problem. Experimental results showed that the proposed FRAS mechanism yields a better service scale with lower average delay, error rate, and operating expenses compared to other autoscaling schemes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2799230</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2461-8377</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2018-10, Vol.14 (10), p.4529-4537
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2018_2799230
source IEEE Electronic Library (IEL)
subjects Autoscaling
Cloud computing
Computer architecture
container virtualization
Containers
Costs
fog computing
fuzzy theory
Industrial applications
Libraries
Lightweight
Scalability
Virtual machine monitors
virtual network function (VNF)
Virtualization
Weight reduction
title A Lightweight Autoscaling Mechanism for Fog Computing in Industrial Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lightweight%20Autoscaling%20Mechanism%20for%20Fog%20Computing%20in%20Industrial%20Applications&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Tseng,%20Fan-Hsun&rft.date=2018-10-01&rft.volume=14&rft.issue=10&rft.spage=4529&rft.epage=4537&rft.pages=4529-4537&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2799230&rft_dat=%3Cproquest_RIE%3E2117187976%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117187976&rft_id=info:pmid/&rft_ieee_id=8272512&rfr_iscdi=true