Identification of Black Plastics Based on Fuzzy RBF Neural Networks: Focused on Data Preprocessing Techniques Through Fourier Transform Infrared Radiation
The performance enhancement of system identification of various plastic materials to effectively recycle the waste plastics arises as a key issue studied here. For black plastics, which contain carbon black, one is unable to discriminate it from other materials. To facilitate the identification proc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2018-05, Vol.14 (5), p.1802-1813 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1813 |
---|---|
container_issue | 5 |
container_start_page | 1802 |
container_title | IEEE transactions on industrial informatics |
container_volume | 14 |
creator | Roh, Seok-Beom Oh, Sung-Kwun Pedrycz, Witold |
description | The performance enhancement of system identification of various plastic materials to effectively recycle the waste plastics arises as a key issue studied here. For black plastics, which contain carbon black, one is unable to discriminate it from other materials. To facilitate the identification process, Fourier transform-infrared with attenuated total reflectance is used to carry out qualitative as well as quantitative analysis of black plastics. Since a spectrum obtained in this manner constitutes highly dimensional data, feature reduction becomes necessary to extract sound features and reduce the dimensionality of the original spectrum. In this study, three types of feature extraction techniques are considered: peak detection technique, feature extraction based on the chemical characteristics, and fuzzy transform-based feature extraction to determine sound discriminative features. In order to enhance classification process, fuzzy radial basis function neural networks classifier is constructed; these architectures of the classifiers take advantage of the hybrid technologies. Based upon experimental studies, it is shown that the proposed classification system with the feature extraction techniques exhibits superior performance over the performance reported for the already studied classifiers. |
doi_str_mv | 10.1109/TII.2017.2771254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2017_2771254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8100918</ieee_id><sourcerecordid>2035273126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-18f64062fd4ee09d80e6d5d199f5ab21b498569ac57d7b59106e7b2df8c609c23</originalsourceid><addsrcrecordid>eNo9UU1P6zAQjBBIfN6RuFjinL5dJ05ibhToe5EQIBTOkWuvqaEkYCdC9Kfwa3FfK06z0s7MjnaS5BRhggjyT1PXEw5YTnhZIhf5TnKAMscUQMBunIXANOOQ7SeHIbwAZCVk8iD5rg11g7NOq8H1Hestmy6VfmUPSxUGpwObqkCGxdVsXK2-2ON0xu5o9GoZYfjs_Wu4YLNej1vWtRoUe_D07ntNIbjumTWkF537GCmwZuH78XkRBaN35FnjVRds799Y3VmvfPR4VMb9z3Kc7Fm1DHSyxaPkaXbTXP1Lb-__1leXt6nmEocUK1vkUHBrciKQpgIqjDAopRVqznGey0oUUmlRmnIuJEJB5ZwbW-kCpObZUXK-8Y2R1yGH9iWm6-LJNv5L8DJDXkQWbFja9yF4su27d2_Kf7UI7bqBNjbQrhtotw1EydlG4ojol14hgMQq-wF0loOe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035273126</pqid></control><display><type>article</type><title>Identification of Black Plastics Based on Fuzzy RBF Neural Networks: Focused on Data Preprocessing Techniques Through Fourier Transform Infrared Radiation</title><source>IEEE Electronic Library (IEL)</source><creator>Roh, Seok-Beom ; Oh, Sung-Kwun ; Pedrycz, Witold</creator><creatorcontrib>Roh, Seok-Beom ; Oh, Sung-Kwun ; Pedrycz, Witold</creatorcontrib><description>The performance enhancement of system identification of various plastic materials to effectively recycle the waste plastics arises as a key issue studied here. For black plastics, which contain carbon black, one is unable to discriminate it from other materials. To facilitate the identification process, Fourier transform-infrared with attenuated total reflectance is used to carry out qualitative as well as quantitative analysis of black plastics. Since a spectrum obtained in this manner constitutes highly dimensional data, feature reduction becomes necessary to extract sound features and reduce the dimensionality of the original spectrum. In this study, three types of feature extraction techniques are considered: peak detection technique, feature extraction based on the chemical characteristics, and fuzzy transform-based feature extraction to determine sound discriminative features. In order to enhance classification process, fuzzy radial basis function neural networks classifier is constructed; these architectures of the classifiers take advantage of the hybrid technologies. Based upon experimental studies, it is shown that the proposed classification system with the feature extraction techniques exhibits superior performance over the performance reported for the already studied classifiers.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2017.2771254</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Basis functions ; Carbon black ; Classification ; Classifiers ; Feature extraction ; Fourier transform infrared (FTIR) radiation ; Fourier transforms ; Fuzzy logic ; fuzzy radial basis function neural networks (FRBFNNs) ; Fuzzy sets ; fuzzy transform ; identification of black plastics ; Infrared radiation ; Input variables ; Neural networks ; Performance enhancement ; Plastics ; Polymers ; Preprocessing ; Qualitative analysis ; Quantitative analysis ; Radial basis function ; Radial basis function networks ; Recycling ; recycling method ; Reflectance ; System identification ; Transforms</subject><ispartof>IEEE transactions on industrial informatics, 2018-05, Vol.14 (5), p.1802-1813</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-18f64062fd4ee09d80e6d5d199f5ab21b498569ac57d7b59106e7b2df8c609c23</citedby><cites>FETCH-LOGICAL-c291t-18f64062fd4ee09d80e6d5d199f5ab21b498569ac57d7b59106e7b2df8c609c23</cites><orcidid>0000-0002-9335-9930 ; 0000-0001-6798-8955 ; 0000-0001-7277-6869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8100918$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8100918$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roh, Seok-Beom</creatorcontrib><creatorcontrib>Oh, Sung-Kwun</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><title>Identification of Black Plastics Based on Fuzzy RBF Neural Networks: Focused on Data Preprocessing Techniques Through Fourier Transform Infrared Radiation</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The performance enhancement of system identification of various plastic materials to effectively recycle the waste plastics arises as a key issue studied here. For black plastics, which contain carbon black, one is unable to discriminate it from other materials. To facilitate the identification process, Fourier transform-infrared with attenuated total reflectance is used to carry out qualitative as well as quantitative analysis of black plastics. Since a spectrum obtained in this manner constitutes highly dimensional data, feature reduction becomes necessary to extract sound features and reduce the dimensionality of the original spectrum. In this study, three types of feature extraction techniques are considered: peak detection technique, feature extraction based on the chemical characteristics, and fuzzy transform-based feature extraction to determine sound discriminative features. In order to enhance classification process, fuzzy radial basis function neural networks classifier is constructed; these architectures of the classifiers take advantage of the hybrid technologies. Based upon experimental studies, it is shown that the proposed classification system with the feature extraction techniques exhibits superior performance over the performance reported for the already studied classifiers.</description><subject>Basis functions</subject><subject>Carbon black</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Feature extraction</subject><subject>Fourier transform infrared (FTIR) radiation</subject><subject>Fourier transforms</subject><subject>Fuzzy logic</subject><subject>fuzzy radial basis function neural networks (FRBFNNs)</subject><subject>Fuzzy sets</subject><subject>fuzzy transform</subject><subject>identification of black plastics</subject><subject>Infrared radiation</subject><subject>Input variables</subject><subject>Neural networks</subject><subject>Performance enhancement</subject><subject>Plastics</subject><subject>Polymers</subject><subject>Preprocessing</subject><subject>Qualitative analysis</subject><subject>Quantitative analysis</subject><subject>Radial basis function</subject><subject>Radial basis function networks</subject><subject>Recycling</subject><subject>recycling method</subject><subject>Reflectance</subject><subject>System identification</subject><subject>Transforms</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UU1P6zAQjBBIfN6RuFjinL5dJ05ibhToe5EQIBTOkWuvqaEkYCdC9Kfwa3FfK06z0s7MjnaS5BRhggjyT1PXEw5YTnhZIhf5TnKAMscUQMBunIXANOOQ7SeHIbwAZCVk8iD5rg11g7NOq8H1Hestmy6VfmUPSxUGpwObqkCGxdVsXK2-2ON0xu5o9GoZYfjs_Wu4YLNej1vWtRoUe_D07ntNIbjumTWkF537GCmwZuH78XkRBaN35FnjVRds799Y3VmvfPR4VMb9z3Kc7Fm1DHSyxaPkaXbTXP1Lb-__1leXt6nmEocUK1vkUHBrciKQpgIqjDAopRVqznGey0oUUmlRmnIuJEJB5ZwbW-kCpObZUXK-8Y2R1yGH9iWm6-LJNv5L8DJDXkQWbFja9yF4su27d2_Kf7UI7bqBNjbQrhtotw1EydlG4ojol14hgMQq-wF0loOe</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Roh, Seok-Beom</creator><creator>Oh, Sung-Kwun</creator><creator>Pedrycz, Witold</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9335-9930</orcidid><orcidid>https://orcid.org/0000-0001-6798-8955</orcidid><orcidid>https://orcid.org/0000-0001-7277-6869</orcidid></search><sort><creationdate>20180501</creationdate><title>Identification of Black Plastics Based on Fuzzy RBF Neural Networks: Focused on Data Preprocessing Techniques Through Fourier Transform Infrared Radiation</title><author>Roh, Seok-Beom ; Oh, Sung-Kwun ; Pedrycz, Witold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-18f64062fd4ee09d80e6d5d199f5ab21b498569ac57d7b59106e7b2df8c609c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basis functions</topic><topic>Carbon black</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Feature extraction</topic><topic>Fourier transform infrared (FTIR) radiation</topic><topic>Fourier transforms</topic><topic>Fuzzy logic</topic><topic>fuzzy radial basis function neural networks (FRBFNNs)</topic><topic>Fuzzy sets</topic><topic>fuzzy transform</topic><topic>identification of black plastics</topic><topic>Infrared radiation</topic><topic>Input variables</topic><topic>Neural networks</topic><topic>Performance enhancement</topic><topic>Plastics</topic><topic>Polymers</topic><topic>Preprocessing</topic><topic>Qualitative analysis</topic><topic>Quantitative analysis</topic><topic>Radial basis function</topic><topic>Radial basis function networks</topic><topic>Recycling</topic><topic>recycling method</topic><topic>Reflectance</topic><topic>System identification</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Roh, Seok-Beom</creatorcontrib><creatorcontrib>Oh, Sung-Kwun</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roh, Seok-Beom</au><au>Oh, Sung-Kwun</au><au>Pedrycz, Witold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Black Plastics Based on Fuzzy RBF Neural Networks: Focused on Data Preprocessing Techniques Through Fourier Transform Infrared Radiation</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>14</volume><issue>5</issue><spage>1802</spage><epage>1813</epage><pages>1802-1813</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The performance enhancement of system identification of various plastic materials to effectively recycle the waste plastics arises as a key issue studied here. For black plastics, which contain carbon black, one is unable to discriminate it from other materials. To facilitate the identification process, Fourier transform-infrared with attenuated total reflectance is used to carry out qualitative as well as quantitative analysis of black plastics. Since a spectrum obtained in this manner constitutes highly dimensional data, feature reduction becomes necessary to extract sound features and reduce the dimensionality of the original spectrum. In this study, three types of feature extraction techniques are considered: peak detection technique, feature extraction based on the chemical characteristics, and fuzzy transform-based feature extraction to determine sound discriminative features. In order to enhance classification process, fuzzy radial basis function neural networks classifier is constructed; these architectures of the classifiers take advantage of the hybrid technologies. Based upon experimental studies, it is shown that the proposed classification system with the feature extraction techniques exhibits superior performance over the performance reported for the already studied classifiers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2017.2771254</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9335-9930</orcidid><orcidid>https://orcid.org/0000-0001-6798-8955</orcidid><orcidid>https://orcid.org/0000-0001-7277-6869</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2018-05, Vol.14 (5), p.1802-1813 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2017_2771254 |
source | IEEE Electronic Library (IEL) |
subjects | Basis functions Carbon black Classification Classifiers Feature extraction Fourier transform infrared (FTIR) radiation Fourier transforms Fuzzy logic fuzzy radial basis function neural networks (FRBFNNs) Fuzzy sets fuzzy transform identification of black plastics Infrared radiation Input variables Neural networks Performance enhancement Plastics Polymers Preprocessing Qualitative analysis Quantitative analysis Radial basis function Radial basis function networks Recycling recycling method Reflectance System identification Transforms |
title | Identification of Black Plastics Based on Fuzzy RBF Neural Networks: Focused on Data Preprocessing Techniques Through Fourier Transform Infrared Radiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Black%20Plastics%20Based%20on%20Fuzzy%20RBF%20Neural%20Networks:%20Focused%20on%20Data%20Preprocessing%20Techniques%20Through%20Fourier%20Transform%20Infrared%20Radiation&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Roh,%20Seok-Beom&rft.date=2018-05-01&rft.volume=14&rft.issue=5&rft.spage=1802&rft.epage=1813&rft.pages=1802-1813&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2017.2771254&rft_dat=%3Cproquest_RIE%3E2035273126%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2035273126&rft_id=info:pmid/&rft_ieee_id=8100918&rfr_iscdi=true |