Identification of Black Plastics Based on Fuzzy RBF Neural Networks: Focused on Data Preprocessing Techniques Through Fourier Transform Infrared Radiation

The performance enhancement of system identification of various plastic materials to effectively recycle the waste plastics arises as a key issue studied here. For black plastics, which contain carbon black, one is unable to discriminate it from other materials. To facilitate the identification proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2018-05, Vol.14 (5), p.1802-1813
Hauptverfasser: Roh, Seok-Beom, Oh, Sung-Kwun, Pedrycz, Witold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1813
container_issue 5
container_start_page 1802
container_title IEEE transactions on industrial informatics
container_volume 14
creator Roh, Seok-Beom
Oh, Sung-Kwun
Pedrycz, Witold
description The performance enhancement of system identification of various plastic materials to effectively recycle the waste plastics arises as a key issue studied here. For black plastics, which contain carbon black, one is unable to discriminate it from other materials. To facilitate the identification process, Fourier transform-infrared with attenuated total reflectance is used to carry out qualitative as well as quantitative analysis of black plastics. Since a spectrum obtained in this manner constitutes highly dimensional data, feature reduction becomes necessary to extract sound features and reduce the dimensionality of the original spectrum. In this study, three types of feature extraction techniques are considered: peak detection technique, feature extraction based on the chemical characteristics, and fuzzy transform-based feature extraction to determine sound discriminative features. In order to enhance classification process, fuzzy radial basis function neural networks classifier is constructed; these architectures of the classifiers take advantage of the hybrid technologies. Based upon experimental studies, it is shown that the proposed classification system with the feature extraction techniques exhibits superior performance over the performance reported for the already studied classifiers.
doi_str_mv 10.1109/TII.2017.2771254
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2017_2771254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8100918</ieee_id><sourcerecordid>2035273126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-18f64062fd4ee09d80e6d5d199f5ab21b498569ac57d7b59106e7b2df8c609c23</originalsourceid><addsrcrecordid>eNo9UU1P6zAQjBBIfN6RuFjinL5dJ05ibhToe5EQIBTOkWuvqaEkYCdC9Kfwa3FfK06z0s7MjnaS5BRhggjyT1PXEw5YTnhZIhf5TnKAMscUQMBunIXANOOQ7SeHIbwAZCVk8iD5rg11g7NOq8H1Hestmy6VfmUPSxUGpwObqkCGxdVsXK2-2ON0xu5o9GoZYfjs_Wu4YLNej1vWtRoUe_D07ntNIbjumTWkF537GCmwZuH78XkRBaN35FnjVRds799Y3VmvfPR4VMb9z3Kc7Fm1DHSyxaPkaXbTXP1Lb-__1leXt6nmEocUK1vkUHBrciKQpgIqjDAopRVqznGey0oUUmlRmnIuJEJB5ZwbW-kCpObZUXK-8Y2R1yGH9iWm6-LJNv5L8DJDXkQWbFja9yF4su27d2_Kf7UI7bqBNjbQrhtotw1EydlG4ojol14hgMQq-wF0loOe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035273126</pqid></control><display><type>article</type><title>Identification of Black Plastics Based on Fuzzy RBF Neural Networks: Focused on Data Preprocessing Techniques Through Fourier Transform Infrared Radiation</title><source>IEEE Electronic Library (IEL)</source><creator>Roh, Seok-Beom ; Oh, Sung-Kwun ; Pedrycz, Witold</creator><creatorcontrib>Roh, Seok-Beom ; Oh, Sung-Kwun ; Pedrycz, Witold</creatorcontrib><description>The performance enhancement of system identification of various plastic materials to effectively recycle the waste plastics arises as a key issue studied here. For black plastics, which contain carbon black, one is unable to discriminate it from other materials. To facilitate the identification process, Fourier transform-infrared with attenuated total reflectance is used to carry out qualitative as well as quantitative analysis of black plastics. Since a spectrum obtained in this manner constitutes highly dimensional data, feature reduction becomes necessary to extract sound features and reduce the dimensionality of the original spectrum. In this study, three types of feature extraction techniques are considered: peak detection technique, feature extraction based on the chemical characteristics, and fuzzy transform-based feature extraction to determine sound discriminative features. In order to enhance classification process, fuzzy radial basis function neural networks classifier is constructed; these architectures of the classifiers take advantage of the hybrid technologies. Based upon experimental studies, it is shown that the proposed classification system with the feature extraction techniques exhibits superior performance over the performance reported for the already studied classifiers.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2017.2771254</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Basis functions ; Carbon black ; Classification ; Classifiers ; Feature extraction ; Fourier transform infrared (FTIR) radiation ; Fourier transforms ; Fuzzy logic ; fuzzy radial basis function neural networks (FRBFNNs) ; Fuzzy sets ; fuzzy transform ; identification of black plastics ; Infrared radiation ; Input variables ; Neural networks ; Performance enhancement ; Plastics ; Polymers ; Preprocessing ; Qualitative analysis ; Quantitative analysis ; Radial basis function ; Radial basis function networks ; Recycling ; recycling method ; Reflectance ; System identification ; Transforms</subject><ispartof>IEEE transactions on industrial informatics, 2018-05, Vol.14 (5), p.1802-1813</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-18f64062fd4ee09d80e6d5d199f5ab21b498569ac57d7b59106e7b2df8c609c23</citedby><cites>FETCH-LOGICAL-c291t-18f64062fd4ee09d80e6d5d199f5ab21b498569ac57d7b59106e7b2df8c609c23</cites><orcidid>0000-0002-9335-9930 ; 0000-0001-6798-8955 ; 0000-0001-7277-6869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8100918$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8100918$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roh, Seok-Beom</creatorcontrib><creatorcontrib>Oh, Sung-Kwun</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><title>Identification of Black Plastics Based on Fuzzy RBF Neural Networks: Focused on Data Preprocessing Techniques Through Fourier Transform Infrared Radiation</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The performance enhancement of system identification of various plastic materials to effectively recycle the waste plastics arises as a key issue studied here. For black plastics, which contain carbon black, one is unable to discriminate it from other materials. To facilitate the identification process, Fourier transform-infrared with attenuated total reflectance is used to carry out qualitative as well as quantitative analysis of black plastics. Since a spectrum obtained in this manner constitutes highly dimensional data, feature reduction becomes necessary to extract sound features and reduce the dimensionality of the original spectrum. In this study, three types of feature extraction techniques are considered: peak detection technique, feature extraction based on the chemical characteristics, and fuzzy transform-based feature extraction to determine sound discriminative features. In order to enhance classification process, fuzzy radial basis function neural networks classifier is constructed; these architectures of the classifiers take advantage of the hybrid technologies. Based upon experimental studies, it is shown that the proposed classification system with the feature extraction techniques exhibits superior performance over the performance reported for the already studied classifiers.</description><subject>Basis functions</subject><subject>Carbon black</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Feature extraction</subject><subject>Fourier transform infrared (FTIR) radiation</subject><subject>Fourier transforms</subject><subject>Fuzzy logic</subject><subject>fuzzy radial basis function neural networks (FRBFNNs)</subject><subject>Fuzzy sets</subject><subject>fuzzy transform</subject><subject>identification of black plastics</subject><subject>Infrared radiation</subject><subject>Input variables</subject><subject>Neural networks</subject><subject>Performance enhancement</subject><subject>Plastics</subject><subject>Polymers</subject><subject>Preprocessing</subject><subject>Qualitative analysis</subject><subject>Quantitative analysis</subject><subject>Radial basis function</subject><subject>Radial basis function networks</subject><subject>Recycling</subject><subject>recycling method</subject><subject>Reflectance</subject><subject>System identification</subject><subject>Transforms</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UU1P6zAQjBBIfN6RuFjinL5dJ05ibhToe5EQIBTOkWuvqaEkYCdC9Kfwa3FfK06z0s7MjnaS5BRhggjyT1PXEw5YTnhZIhf5TnKAMscUQMBunIXANOOQ7SeHIbwAZCVk8iD5rg11g7NOq8H1Hestmy6VfmUPSxUGpwObqkCGxdVsXK2-2ON0xu5o9GoZYfjs_Wu4YLNej1vWtRoUe_D07ntNIbjumTWkF537GCmwZuH78XkRBaN35FnjVRds799Y3VmvfPR4VMb9z3Kc7Fm1DHSyxaPkaXbTXP1Lb-__1leXt6nmEocUK1vkUHBrciKQpgIqjDAopRVqznGey0oUUmlRmnIuJEJB5ZwbW-kCpObZUXK-8Y2R1yGH9iWm6-LJNv5L8DJDXkQWbFja9yF4su27d2_Kf7UI7bqBNjbQrhtotw1EydlG4ojol14hgMQq-wF0loOe</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Roh, Seok-Beom</creator><creator>Oh, Sung-Kwun</creator><creator>Pedrycz, Witold</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9335-9930</orcidid><orcidid>https://orcid.org/0000-0001-6798-8955</orcidid><orcidid>https://orcid.org/0000-0001-7277-6869</orcidid></search><sort><creationdate>20180501</creationdate><title>Identification of Black Plastics Based on Fuzzy RBF Neural Networks: Focused on Data Preprocessing Techniques Through Fourier Transform Infrared Radiation</title><author>Roh, Seok-Beom ; Oh, Sung-Kwun ; Pedrycz, Witold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-18f64062fd4ee09d80e6d5d199f5ab21b498569ac57d7b59106e7b2df8c609c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basis functions</topic><topic>Carbon black</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Feature extraction</topic><topic>Fourier transform infrared (FTIR) radiation</topic><topic>Fourier transforms</topic><topic>Fuzzy logic</topic><topic>fuzzy radial basis function neural networks (FRBFNNs)</topic><topic>Fuzzy sets</topic><topic>fuzzy transform</topic><topic>identification of black plastics</topic><topic>Infrared radiation</topic><topic>Input variables</topic><topic>Neural networks</topic><topic>Performance enhancement</topic><topic>Plastics</topic><topic>Polymers</topic><topic>Preprocessing</topic><topic>Qualitative analysis</topic><topic>Quantitative analysis</topic><topic>Radial basis function</topic><topic>Radial basis function networks</topic><topic>Recycling</topic><topic>recycling method</topic><topic>Reflectance</topic><topic>System identification</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Roh, Seok-Beom</creatorcontrib><creatorcontrib>Oh, Sung-Kwun</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roh, Seok-Beom</au><au>Oh, Sung-Kwun</au><au>Pedrycz, Witold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Black Plastics Based on Fuzzy RBF Neural Networks: Focused on Data Preprocessing Techniques Through Fourier Transform Infrared Radiation</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>14</volume><issue>5</issue><spage>1802</spage><epage>1813</epage><pages>1802-1813</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The performance enhancement of system identification of various plastic materials to effectively recycle the waste plastics arises as a key issue studied here. For black plastics, which contain carbon black, one is unable to discriminate it from other materials. To facilitate the identification process, Fourier transform-infrared with attenuated total reflectance is used to carry out qualitative as well as quantitative analysis of black plastics. Since a spectrum obtained in this manner constitutes highly dimensional data, feature reduction becomes necessary to extract sound features and reduce the dimensionality of the original spectrum. In this study, three types of feature extraction techniques are considered: peak detection technique, feature extraction based on the chemical characteristics, and fuzzy transform-based feature extraction to determine sound discriminative features. In order to enhance classification process, fuzzy radial basis function neural networks classifier is constructed; these architectures of the classifiers take advantage of the hybrid technologies. Based upon experimental studies, it is shown that the proposed classification system with the feature extraction techniques exhibits superior performance over the performance reported for the already studied classifiers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2017.2771254</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9335-9930</orcidid><orcidid>https://orcid.org/0000-0001-6798-8955</orcidid><orcidid>https://orcid.org/0000-0001-7277-6869</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2018-05, Vol.14 (5), p.1802-1813
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2017_2771254
source IEEE Electronic Library (IEL)
subjects Basis functions
Carbon black
Classification
Classifiers
Feature extraction
Fourier transform infrared (FTIR) radiation
Fourier transforms
Fuzzy logic
fuzzy radial basis function neural networks (FRBFNNs)
Fuzzy sets
fuzzy transform
identification of black plastics
Infrared radiation
Input variables
Neural networks
Performance enhancement
Plastics
Polymers
Preprocessing
Qualitative analysis
Quantitative analysis
Radial basis function
Radial basis function networks
Recycling
recycling method
Reflectance
System identification
Transforms
title Identification of Black Plastics Based on Fuzzy RBF Neural Networks: Focused on Data Preprocessing Techniques Through Fourier Transform Infrared Radiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Black%20Plastics%20Based%20on%20Fuzzy%20RBF%20Neural%20Networks:%20Focused%20on%20Data%20Preprocessing%20Techniques%20Through%20Fourier%20Transform%20Infrared%20Radiation&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Roh,%20Seok-Beom&rft.date=2018-05-01&rft.volume=14&rft.issue=5&rft.spage=1802&rft.epage=1813&rft.pages=1802-1813&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2017.2771254&rft_dat=%3Cproquest_RIE%3E2035273126%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2035273126&rft_id=info:pmid/&rft_ieee_id=8100918&rfr_iscdi=true