Fuzzy Classifier Design for Development Tendency of Hot Metal Silicon Content in Blast Furnace

Since the hot metal silicon content simultaneously reflects the product quality and the thermal state of the blast furnace, accurately predicting the development tendency of hot metal silicon content has the immensely guiding role for blast furnace operators. This paper focuses on fuzzy classifier d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2018-03, Vol.14 (3), p.1115-1123
Hauptverfasser: Li, Junpeng, Hua, Changchun, Yang, Yana, Guan, Xinping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1123
container_issue 3
container_start_page 1115
container_title IEEE transactions on industrial informatics
container_volume 14
creator Li, Junpeng
Hua, Changchun
Yang, Yana
Guan, Xinping
description Since the hot metal silicon content simultaneously reflects the product quality and the thermal state of the blast furnace, accurately predicting the development tendency of hot metal silicon content has the immensely guiding role for blast furnace operators. This paper focuses on fuzzy classifier design for the development tendency of hot metal silicon content based on blast furnace operation data. The cross characteristic of binary classification problem was found via embedding high-dimensional blast furnace data into a two-dimensional space. Then, presented a nonparallel hyperplanes based fuzzy classifier, which conquered the cross classification still holding the interpretability advantage as fuzzy classifier. The proposed method was tested on No.2 blast furnace of Liuzhou Steel in China, that demonstrated the excellent performance compared with some other classifier algorithms.
doi_str_mv 10.1109/TII.2017.2770177
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2017_2770177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8097020</ieee_id><sourcerecordid>2010545780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-95cc6faf56dc4fdad8e32cd1cddf0ae0e3035490da5d0e2707427a6706ca70a43</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvAc-dL0zTrUatzg4kH59USkhfJ6JLZdML215uy4el9h9_38fgRcstgwhhUD6vFYpIDk5NcynTkGRmxqmAZgIDzlIVgGc-BX5KrGNcAXAKvRuRrtjsc9rRuVYzOOuzoM0b37akNQ_zFNmw36Hu6Qm_Q6z0Nls5DT9-wVy39cK3TwdM6-H6gnKdPaaqns13nlcZrcmFVG_HmdMfkc_ayqufZ8v11UT8uM51XrM8qoXVplRWl0YU1ykyR59owbYwFhYAcuCgqMEoYwFyCLHKpSgmlVhJUwcfk_ri77cLPDmPfrMPwQRubJAVEIeQUEgVHSnchxg5ts-3cRnX7hkEzWGySxaEgm5PFVLk7Vhwi_uNTqCQkmX8p3W4a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010545780</pqid></control><display><type>article</type><title>Fuzzy Classifier Design for Development Tendency of Hot Metal Silicon Content in Blast Furnace</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Junpeng ; Hua, Changchun ; Yang, Yana ; Guan, Xinping</creator><creatorcontrib>Li, Junpeng ; Hua, Changchun ; Yang, Yana ; Guan, Xinping</creatorcontrib><description>Since the hot metal silicon content simultaneously reflects the product quality and the thermal state of the blast furnace, accurately predicting the development tendency of hot metal silicon content has the immensely guiding role for blast furnace operators. This paper focuses on fuzzy classifier design for the development tendency of hot metal silicon content based on blast furnace operation data. The cross characteristic of binary classification problem was found via embedding high-dimensional blast furnace data into a two-dimensional space. Then, presented a nonparallel hyperplanes based fuzzy classifier, which conquered the cross classification still holding the interpretability advantage as fuzzy classifier. The proposed method was tested on No.2 blast furnace of Liuzhou Steel in China, that demonstrated the excellent performance compared with some other classifier algorithms.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2017.2770177</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Blast furnace ; Blast furnace practice ; Blast furnaces ; Classification ; Classifiers ; data visualization ; fuzzy classifier ; Hot blast ; hot metal silicon content ; hyperplane ; Hyperplanes ; Metals ; Predator prey systems ; Prediction algorithms ; Predictive models ; Repair &amp; maintenance ; Silicon ; Steel industry ; Support vector machines</subject><ispartof>IEEE transactions on industrial informatics, 2018-03, Vol.14 (3), p.1115-1123</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-95cc6faf56dc4fdad8e32cd1cddf0ae0e3035490da5d0e2707427a6706ca70a43</citedby><cites>FETCH-LOGICAL-c291t-95cc6faf56dc4fdad8e32cd1cddf0ae0e3035490da5d0e2707427a6706ca70a43</cites><orcidid>0000-0001-6311-2112 ; 0000-0003-4028-2703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8097020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8097020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Junpeng</creatorcontrib><creatorcontrib>Hua, Changchun</creatorcontrib><creatorcontrib>Yang, Yana</creatorcontrib><creatorcontrib>Guan, Xinping</creatorcontrib><title>Fuzzy Classifier Design for Development Tendency of Hot Metal Silicon Content in Blast Furnace</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Since the hot metal silicon content simultaneously reflects the product quality and the thermal state of the blast furnace, accurately predicting the development tendency of hot metal silicon content has the immensely guiding role for blast furnace operators. This paper focuses on fuzzy classifier design for the development tendency of hot metal silicon content based on blast furnace operation data. The cross characteristic of binary classification problem was found via embedding high-dimensional blast furnace data into a two-dimensional space. Then, presented a nonparallel hyperplanes based fuzzy classifier, which conquered the cross classification still holding the interpretability advantage as fuzzy classifier. The proposed method was tested on No.2 blast furnace of Liuzhou Steel in China, that demonstrated the excellent performance compared with some other classifier algorithms.</description><subject>Blast furnace</subject><subject>Blast furnace practice</subject><subject>Blast furnaces</subject><subject>Classification</subject><subject>Classifiers</subject><subject>data visualization</subject><subject>fuzzy classifier</subject><subject>Hot blast</subject><subject>hot metal silicon content</subject><subject>hyperplane</subject><subject>Hyperplanes</subject><subject>Metals</subject><subject>Predator prey systems</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Repair &amp; maintenance</subject><subject>Silicon</subject><subject>Steel industry</subject><subject>Support vector machines</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvAc-dL0zTrUatzg4kH59USkhfJ6JLZdML215uy4el9h9_38fgRcstgwhhUD6vFYpIDk5NcynTkGRmxqmAZgIDzlIVgGc-BX5KrGNcAXAKvRuRrtjsc9rRuVYzOOuzoM0b37akNQ_zFNmw36Hu6Qm_Q6z0Nls5DT9-wVy39cK3TwdM6-H6gnKdPaaqns13nlcZrcmFVG_HmdMfkc_ayqufZ8v11UT8uM51XrM8qoXVplRWl0YU1ykyR59owbYwFhYAcuCgqMEoYwFyCLHKpSgmlVhJUwcfk_ri77cLPDmPfrMPwQRubJAVEIeQUEgVHSnchxg5ts-3cRnX7hkEzWGySxaEgm5PFVLk7Vhwi_uNTqCQkmX8p3W4a</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Li, Junpeng</creator><creator>Hua, Changchun</creator><creator>Yang, Yana</creator><creator>Guan, Xinping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6311-2112</orcidid><orcidid>https://orcid.org/0000-0003-4028-2703</orcidid></search><sort><creationdate>20180301</creationdate><title>Fuzzy Classifier Design for Development Tendency of Hot Metal Silicon Content in Blast Furnace</title><author>Li, Junpeng ; Hua, Changchun ; Yang, Yana ; Guan, Xinping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-95cc6faf56dc4fdad8e32cd1cddf0ae0e3035490da5d0e2707427a6706ca70a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Blast furnace</topic><topic>Blast furnace practice</topic><topic>Blast furnaces</topic><topic>Classification</topic><topic>Classifiers</topic><topic>data visualization</topic><topic>fuzzy classifier</topic><topic>Hot blast</topic><topic>hot metal silicon content</topic><topic>hyperplane</topic><topic>Hyperplanes</topic><topic>Metals</topic><topic>Predator prey systems</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Repair &amp; maintenance</topic><topic>Silicon</topic><topic>Steel industry</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Junpeng</creatorcontrib><creatorcontrib>Hua, Changchun</creatorcontrib><creatorcontrib>Yang, Yana</creatorcontrib><creatorcontrib>Guan, Xinping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Junpeng</au><au>Hua, Changchun</au><au>Yang, Yana</au><au>Guan, Xinping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Classifier Design for Development Tendency of Hot Metal Silicon Content in Blast Furnace</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>14</volume><issue>3</issue><spage>1115</spage><epage>1123</epage><pages>1115-1123</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Since the hot metal silicon content simultaneously reflects the product quality and the thermal state of the blast furnace, accurately predicting the development tendency of hot metal silicon content has the immensely guiding role for blast furnace operators. This paper focuses on fuzzy classifier design for the development tendency of hot metal silicon content based on blast furnace operation data. The cross characteristic of binary classification problem was found via embedding high-dimensional blast furnace data into a two-dimensional space. Then, presented a nonparallel hyperplanes based fuzzy classifier, which conquered the cross classification still holding the interpretability advantage as fuzzy classifier. The proposed method was tested on No.2 blast furnace of Liuzhou Steel in China, that demonstrated the excellent performance compared with some other classifier algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2017.2770177</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6311-2112</orcidid><orcidid>https://orcid.org/0000-0003-4028-2703</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2018-03, Vol.14 (3), p.1115-1123
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2017_2770177
source IEEE Electronic Library (IEL)
subjects Blast furnace
Blast furnace practice
Blast furnaces
Classification
Classifiers
data visualization
fuzzy classifier
Hot blast
hot metal silicon content
hyperplane
Hyperplanes
Metals
Predator prey systems
Prediction algorithms
Predictive models
Repair & maintenance
Silicon
Steel industry
Support vector machines
title Fuzzy Classifier Design for Development Tendency of Hot Metal Silicon Content in Blast Furnace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Classifier%20Design%20for%20Development%20Tendency%20of%20Hot%20Metal%20Silicon%20Content%20in%20Blast%20Furnace&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Li,%20Junpeng&rft.date=2018-03-01&rft.volume=14&rft.issue=3&rft.spage=1115&rft.epage=1123&rft.pages=1115-1123&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2017.2770177&rft_dat=%3Cproquest_RIE%3E2010545780%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010545780&rft_id=info:pmid/&rft_ieee_id=8097020&rfr_iscdi=true