Compressed Acquisition and Denoising Recovery of EMGdi Signal in WSNs and IoT

Telemonitoring of diaphragmatic electromyogram (EMGdi) signal in wireless sensor networks (WSNs) and Internet of Things (IoT) holds the promise to be an evolving direction in personalized medicine. The WSNs and IoT enable EMGdi information telemonitoring and communications technologies play importan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2018-05, Vol.14 (5), p.2210-2219
Hauptverfasser: Wu, Fei-Yun, Yang, Kunde, Yang, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2219
container_issue 5
container_start_page 2210
container_title IEEE transactions on industrial informatics
container_volume 14
creator Wu, Fei-Yun
Yang, Kunde
Yang, Zhi
description Telemonitoring of diaphragmatic electromyogram (EMGdi) signal in wireless sensor networks (WSNs) and Internet of Things (IoT) holds the promise to be an evolving direction in personalized medicine. The WSNs and IoT enable EMGdi information telemonitoring and communications technologies play important roles in the process of personal medical care, especially for the respiratory diseases. However, while designing such a system, one should consider the required functionality, miniaturization, energy efficiency, etc., to make fewer resources required in WSNs and IoT. Conventional methods of data acquisition cannot energy-effectively compress data with reduced device costs. Different from the traditional compression methods, compressed sensing (CS) takes promising steps toward these challenges. Unfortunately, EMGdi is not sparse in time domain. Hence, current CS algorithms are extremely difficult to use directly for recovering EMGdi. In order to satisfy the requirements of applications of personal medical care in WSNs and IoT, this study proposes an approximated ι 0 norm based method to search the solution via the gradient descent method, then projects the searched solution to the reconstruction feasible set. Meanwhile, this study adopts a new wavelet threshold based method to denoise the electrocardiographic interference. Experimental results are provided to testify the performance of the proposed methods.
doi_str_mv 10.1109/TII.2017.2759185
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2017_2759185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8055609</ieee_id><sourcerecordid>2035272448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-33ada21dbb01d5c94e46a2dde1c27929e8f947a7efb7b09fcad544e08a551e643</originalsourceid><addsrcrecordid>eNo9kN9LAkEQx48oyKz3oJeFns9mf3m3j2JlB1qQRo_LejsnK3qruxr437em9DQz8Jlhvp8su6fQoxTU06yqegxo0WOFVLSUF1mHKkFzAAmXqZeS5pwBv85uYlwC8AK46mSToV9vAsaIlgzq7d5Ft3O-Jaa15Blbn-Z2QT6x9j8YDsQ35GUyso5M3aI1K-Ja8j19j3945We32VVjVhHvzrWbfb2-zIZv-fhjVA0H47xmiu5yzo01jNr5HKiVtRIo-oZZi7RmhWIKy0aJwhTYzIs5qKY2VgqBUJqUAvuCd7PH091N8Ns9xp1e-n1ID0WdIkpWMCHKRMGJqoOPMWCjN8GtTThoCvooTSdp-ihNn6WllYfTikPEf7wEKfug-C8akmck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035272448</pqid></control><display><type>article</type><title>Compressed Acquisition and Denoising Recovery of EMGdi Signal in WSNs and IoT</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Fei-Yun ; Yang, Kunde ; Yang, Zhi</creator><creatorcontrib>Wu, Fei-Yun ; Yang, Kunde ; Yang, Zhi</creatorcontrib><description>Telemonitoring of diaphragmatic electromyogram (EMGdi) signal in wireless sensor networks (WSNs) and Internet of Things (IoT) holds the promise to be an evolving direction in personalized medicine. The WSNs and IoT enable EMGdi information telemonitoring and communications technologies play important roles in the process of personal medical care, especially for the respiratory diseases. However, while designing such a system, one should consider the required functionality, miniaturization, energy efficiency, etc., to make fewer resources required in WSNs and IoT. Conventional methods of data acquisition cannot energy-effectively compress data with reduced device costs. Different from the traditional compression methods, compressed sensing (CS) takes promising steps toward these challenges. Unfortunately, EMGdi is not sparse in time domain. Hence, current CS algorithms are extremely difficult to use directly for recovering EMGdi. In order to satisfy the requirements of applications of personal medical care in WSNs and IoT, this study proposes an approximated ι 0 norm based method to search the solution via the gradient descent method, then projects the searched solution to the reconstruction feasible set. Meanwhile, this study adopts a new wavelet threshold based method to denoise the electrocardiographic interference. Experimental results are provided to testify the performance of the proposed methods.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2017.2759185</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Approximated &lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; l_0&lt;/tex-math&gt; &lt;/inline-formula&gt; (AL0) norm ; Compressed sensing ; compressed sensing (CS) ; diaphragmatic electromyogram (EMGdi) ; electrocardiographic (ECG) ; Electrocardiography ; Energy consumption ; Feasibility studies ; Health care ; Interference ; Internet of Things ; Internet of Things (IoT) ; Methods ; Miniaturization ; Noise reduction ; Pollution measurement ; Remote sensors ; Respiratory diseases ; Wavelet analysis ; Wireless sensor networks ; wireless sensor networks (WSNs)</subject><ispartof>IEEE transactions on industrial informatics, 2018-05, Vol.14 (5), p.2210-2219</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-33ada21dbb01d5c94e46a2dde1c27929e8f947a7efb7b09fcad544e08a551e643</citedby><cites>FETCH-LOGICAL-c291t-33ada21dbb01d5c94e46a2dde1c27929e8f947a7efb7b09fcad544e08a551e643</cites><orcidid>0000-0001-5792-4130 ; 0000-0002-0276-4093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8055609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8055609$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Fei-Yun</creatorcontrib><creatorcontrib>Yang, Kunde</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><title>Compressed Acquisition and Denoising Recovery of EMGdi Signal in WSNs and IoT</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Telemonitoring of diaphragmatic electromyogram (EMGdi) signal in wireless sensor networks (WSNs) and Internet of Things (IoT) holds the promise to be an evolving direction in personalized medicine. The WSNs and IoT enable EMGdi information telemonitoring and communications technologies play important roles in the process of personal medical care, especially for the respiratory diseases. However, while designing such a system, one should consider the required functionality, miniaturization, energy efficiency, etc., to make fewer resources required in WSNs and IoT. Conventional methods of data acquisition cannot energy-effectively compress data with reduced device costs. Different from the traditional compression methods, compressed sensing (CS) takes promising steps toward these challenges. Unfortunately, EMGdi is not sparse in time domain. Hence, current CS algorithms are extremely difficult to use directly for recovering EMGdi. In order to satisfy the requirements of applications of personal medical care in WSNs and IoT, this study proposes an approximated ι 0 norm based method to search the solution via the gradient descent method, then projects the searched solution to the reconstruction feasible set. Meanwhile, this study adopts a new wavelet threshold based method to denoise the electrocardiographic interference. Experimental results are provided to testify the performance of the proposed methods.</description><subject>Approximated &lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; l_0&lt;/tex-math&gt; &lt;/inline-formula&gt; (AL0) norm</subject><subject>Compressed sensing</subject><subject>compressed sensing (CS)</subject><subject>diaphragmatic electromyogram (EMGdi)</subject><subject>electrocardiographic (ECG)</subject><subject>Electrocardiography</subject><subject>Energy consumption</subject><subject>Feasibility studies</subject><subject>Health care</subject><subject>Interference</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Methods</subject><subject>Miniaturization</subject><subject>Noise reduction</subject><subject>Pollution measurement</subject><subject>Remote sensors</subject><subject>Respiratory diseases</subject><subject>Wavelet analysis</subject><subject>Wireless sensor networks</subject><subject>wireless sensor networks (WSNs)</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LAkEQx48oyKz3oJeFns9mf3m3j2JlB1qQRo_LejsnK3qruxr437em9DQz8Jlhvp8su6fQoxTU06yqegxo0WOFVLSUF1mHKkFzAAmXqZeS5pwBv85uYlwC8AK46mSToV9vAsaIlgzq7d5Ft3O-Jaa15Blbn-Z2QT6x9j8YDsQ35GUyso5M3aI1K-Ja8j19j3945We32VVjVhHvzrWbfb2-zIZv-fhjVA0H47xmiu5yzo01jNr5HKiVtRIo-oZZi7RmhWIKy0aJwhTYzIs5qKY2VgqBUJqUAvuCd7PH091N8Ns9xp1e-n1ID0WdIkpWMCHKRMGJqoOPMWCjN8GtTThoCvooTSdp-ihNn6WllYfTikPEf7wEKfug-C8akmck</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Wu, Fei-Yun</creator><creator>Yang, Kunde</creator><creator>Yang, Zhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5792-4130</orcidid><orcidid>https://orcid.org/0000-0002-0276-4093</orcidid></search><sort><creationdate>20180501</creationdate><title>Compressed Acquisition and Denoising Recovery of EMGdi Signal in WSNs and IoT</title><author>Wu, Fei-Yun ; Yang, Kunde ; Yang, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-33ada21dbb01d5c94e46a2dde1c27929e8f947a7efb7b09fcad544e08a551e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximated &lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; l_0&lt;/tex-math&gt; &lt;/inline-formula&gt; (AL0) norm</topic><topic>Compressed sensing</topic><topic>compressed sensing (CS)</topic><topic>diaphragmatic electromyogram (EMGdi)</topic><topic>electrocardiographic (ECG)</topic><topic>Electrocardiography</topic><topic>Energy consumption</topic><topic>Feasibility studies</topic><topic>Health care</topic><topic>Interference</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Methods</topic><topic>Miniaturization</topic><topic>Noise reduction</topic><topic>Pollution measurement</topic><topic>Remote sensors</topic><topic>Respiratory diseases</topic><topic>Wavelet analysis</topic><topic>Wireless sensor networks</topic><topic>wireless sensor networks (WSNs)</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Fei-Yun</creatorcontrib><creatorcontrib>Yang, Kunde</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Fei-Yun</au><au>Yang, Kunde</au><au>Yang, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressed Acquisition and Denoising Recovery of EMGdi Signal in WSNs and IoT</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>14</volume><issue>5</issue><spage>2210</spage><epage>2219</epage><pages>2210-2219</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Telemonitoring of diaphragmatic electromyogram (EMGdi) signal in wireless sensor networks (WSNs) and Internet of Things (IoT) holds the promise to be an evolving direction in personalized medicine. The WSNs and IoT enable EMGdi information telemonitoring and communications technologies play important roles in the process of personal medical care, especially for the respiratory diseases. However, while designing such a system, one should consider the required functionality, miniaturization, energy efficiency, etc., to make fewer resources required in WSNs and IoT. Conventional methods of data acquisition cannot energy-effectively compress data with reduced device costs. Different from the traditional compression methods, compressed sensing (CS) takes promising steps toward these challenges. Unfortunately, EMGdi is not sparse in time domain. Hence, current CS algorithms are extremely difficult to use directly for recovering EMGdi. In order to satisfy the requirements of applications of personal medical care in WSNs and IoT, this study proposes an approximated ι 0 norm based method to search the solution via the gradient descent method, then projects the searched solution to the reconstruction feasible set. Meanwhile, this study adopts a new wavelet threshold based method to denoise the electrocardiographic interference. Experimental results are provided to testify the performance of the proposed methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2017.2759185</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5792-4130</orcidid><orcidid>https://orcid.org/0000-0002-0276-4093</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2018-05, Vol.14 (5), p.2210-2219
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2017_2759185
source IEEE Electronic Library (IEL)
subjects Approximated <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> l_0</tex-math> </inline-formula> (AL0) norm
Compressed sensing
compressed sensing (CS)
diaphragmatic electromyogram (EMGdi)
electrocardiographic (ECG)
Electrocardiography
Energy consumption
Feasibility studies
Health care
Interference
Internet of Things
Internet of Things (IoT)
Methods
Miniaturization
Noise reduction
Pollution measurement
Remote sensors
Respiratory diseases
Wavelet analysis
Wireless sensor networks
wireless sensor networks (WSNs)
title Compressed Acquisition and Denoising Recovery of EMGdi Signal in WSNs and IoT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressed%20Acquisition%20and%20Denoising%20Recovery%20of%20EMGdi%20Signal%20in%20WSNs%20and%20IoT&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Wu,%20Fei-Yun&rft.date=2018-05-01&rft.volume=14&rft.issue=5&rft.spage=2210&rft.epage=2219&rft.pages=2210-2219&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2017.2759185&rft_dat=%3Cproquest_RIE%3E2035272448%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2035272448&rft_id=info:pmid/&rft_ieee_id=8055609&rfr_iscdi=true