Compressed Acquisition and Denoising Recovery of EMGdi Signal in WSNs and IoT
Telemonitoring of diaphragmatic electromyogram (EMGdi) signal in wireless sensor networks (WSNs) and Internet of Things (IoT) holds the promise to be an evolving direction in personalized medicine. The WSNs and IoT enable EMGdi information telemonitoring and communications technologies play importan...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2018-05, Vol.14 (5), p.2210-2219 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2219 |
---|---|
container_issue | 5 |
container_start_page | 2210 |
container_title | IEEE transactions on industrial informatics |
container_volume | 14 |
creator | Wu, Fei-Yun Yang, Kunde Yang, Zhi |
description | Telemonitoring of diaphragmatic electromyogram (EMGdi) signal in wireless sensor networks (WSNs) and Internet of Things (IoT) holds the promise to be an evolving direction in personalized medicine. The WSNs and IoT enable EMGdi information telemonitoring and communications technologies play important roles in the process of personal medical care, especially for the respiratory diseases. However, while designing such a system, one should consider the required functionality, miniaturization, energy efficiency, etc., to make fewer resources required in WSNs and IoT. Conventional methods of data acquisition cannot energy-effectively compress data with reduced device costs. Different from the traditional compression methods, compressed sensing (CS) takes promising steps toward these challenges. Unfortunately, EMGdi is not sparse in time domain. Hence, current CS algorithms are extremely difficult to use directly for recovering EMGdi. In order to satisfy the requirements of applications of personal medical care in WSNs and IoT, this study proposes an approximated ι 0 norm based method to search the solution via the gradient descent method, then projects the searched solution to the reconstruction feasible set. Meanwhile, this study adopts a new wavelet threshold based method to denoise the electrocardiographic interference. Experimental results are provided to testify the performance of the proposed methods. |
doi_str_mv | 10.1109/TII.2017.2759185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2017_2759185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8055609</ieee_id><sourcerecordid>2035272448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-33ada21dbb01d5c94e46a2dde1c27929e8f947a7efb7b09fcad544e08a551e643</originalsourceid><addsrcrecordid>eNo9kN9LAkEQx48oyKz3oJeFns9mf3m3j2JlB1qQRo_LejsnK3qruxr437em9DQz8Jlhvp8su6fQoxTU06yqegxo0WOFVLSUF1mHKkFzAAmXqZeS5pwBv85uYlwC8AK46mSToV9vAsaIlgzq7d5Ft3O-Jaa15Blbn-Z2QT6x9j8YDsQ35GUyso5M3aI1K-Ja8j19j3945We32VVjVhHvzrWbfb2-zIZv-fhjVA0H47xmiu5yzo01jNr5HKiVtRIo-oZZi7RmhWIKy0aJwhTYzIs5qKY2VgqBUJqUAvuCd7PH091N8Ns9xp1e-n1ID0WdIkpWMCHKRMGJqoOPMWCjN8GtTThoCvooTSdp-ihNn6WllYfTikPEf7wEKfug-C8akmck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035272448</pqid></control><display><type>article</type><title>Compressed Acquisition and Denoising Recovery of EMGdi Signal in WSNs and IoT</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Fei-Yun ; Yang, Kunde ; Yang, Zhi</creator><creatorcontrib>Wu, Fei-Yun ; Yang, Kunde ; Yang, Zhi</creatorcontrib><description>Telemonitoring of diaphragmatic electromyogram (EMGdi) signal in wireless sensor networks (WSNs) and Internet of Things (IoT) holds the promise to be an evolving direction in personalized medicine. The WSNs and IoT enable EMGdi information telemonitoring and communications technologies play important roles in the process of personal medical care, especially for the respiratory diseases. However, while designing such a system, one should consider the required functionality, miniaturization, energy efficiency, etc., to make fewer resources required in WSNs and IoT. Conventional methods of data acquisition cannot energy-effectively compress data with reduced device costs. Different from the traditional compression methods, compressed sensing (CS) takes promising steps toward these challenges. Unfortunately, EMGdi is not sparse in time domain. Hence, current CS algorithms are extremely difficult to use directly for recovering EMGdi. In order to satisfy the requirements of applications of personal medical care in WSNs and IoT, this study proposes an approximated ι 0 norm based method to search the solution via the gradient descent method, then projects the searched solution to the reconstruction feasible set. Meanwhile, this study adopts a new wavelet threshold based method to denoise the electrocardiographic interference. Experimental results are provided to testify the performance of the proposed methods.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2017.2759185</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Approximated <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> l_0</tex-math> </inline-formula> (AL0) norm ; Compressed sensing ; compressed sensing (CS) ; diaphragmatic electromyogram (EMGdi) ; electrocardiographic (ECG) ; Electrocardiography ; Energy consumption ; Feasibility studies ; Health care ; Interference ; Internet of Things ; Internet of Things (IoT) ; Methods ; Miniaturization ; Noise reduction ; Pollution measurement ; Remote sensors ; Respiratory diseases ; Wavelet analysis ; Wireless sensor networks ; wireless sensor networks (WSNs)</subject><ispartof>IEEE transactions on industrial informatics, 2018-05, Vol.14 (5), p.2210-2219</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-33ada21dbb01d5c94e46a2dde1c27929e8f947a7efb7b09fcad544e08a551e643</citedby><cites>FETCH-LOGICAL-c291t-33ada21dbb01d5c94e46a2dde1c27929e8f947a7efb7b09fcad544e08a551e643</cites><orcidid>0000-0001-5792-4130 ; 0000-0002-0276-4093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8055609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8055609$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Fei-Yun</creatorcontrib><creatorcontrib>Yang, Kunde</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><title>Compressed Acquisition and Denoising Recovery of EMGdi Signal in WSNs and IoT</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Telemonitoring of diaphragmatic electromyogram (EMGdi) signal in wireless sensor networks (WSNs) and Internet of Things (IoT) holds the promise to be an evolving direction in personalized medicine. The WSNs and IoT enable EMGdi information telemonitoring and communications technologies play important roles in the process of personal medical care, especially for the respiratory diseases. However, while designing such a system, one should consider the required functionality, miniaturization, energy efficiency, etc., to make fewer resources required in WSNs and IoT. Conventional methods of data acquisition cannot energy-effectively compress data with reduced device costs. Different from the traditional compression methods, compressed sensing (CS) takes promising steps toward these challenges. Unfortunately, EMGdi is not sparse in time domain. Hence, current CS algorithms are extremely difficult to use directly for recovering EMGdi. In order to satisfy the requirements of applications of personal medical care in WSNs and IoT, this study proposes an approximated ι 0 norm based method to search the solution via the gradient descent method, then projects the searched solution to the reconstruction feasible set. Meanwhile, this study adopts a new wavelet threshold based method to denoise the electrocardiographic interference. Experimental results are provided to testify the performance of the proposed methods.</description><subject>Approximated <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> l_0</tex-math> </inline-formula> (AL0) norm</subject><subject>Compressed sensing</subject><subject>compressed sensing (CS)</subject><subject>diaphragmatic electromyogram (EMGdi)</subject><subject>electrocardiographic (ECG)</subject><subject>Electrocardiography</subject><subject>Energy consumption</subject><subject>Feasibility studies</subject><subject>Health care</subject><subject>Interference</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Methods</subject><subject>Miniaturization</subject><subject>Noise reduction</subject><subject>Pollution measurement</subject><subject>Remote sensors</subject><subject>Respiratory diseases</subject><subject>Wavelet analysis</subject><subject>Wireless sensor networks</subject><subject>wireless sensor networks (WSNs)</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LAkEQx48oyKz3oJeFns9mf3m3j2JlB1qQRo_LejsnK3qruxr437em9DQz8Jlhvp8su6fQoxTU06yqegxo0WOFVLSUF1mHKkFzAAmXqZeS5pwBv85uYlwC8AK46mSToV9vAsaIlgzq7d5Ft3O-Jaa15Blbn-Z2QT6x9j8YDsQ35GUyso5M3aI1K-Ja8j19j3945We32VVjVhHvzrWbfb2-zIZv-fhjVA0H47xmiu5yzo01jNr5HKiVtRIo-oZZi7RmhWIKy0aJwhTYzIs5qKY2VgqBUJqUAvuCd7PH091N8Ns9xp1e-n1ID0WdIkpWMCHKRMGJqoOPMWCjN8GtTThoCvooTSdp-ihNn6WllYfTikPEf7wEKfug-C8akmck</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Wu, Fei-Yun</creator><creator>Yang, Kunde</creator><creator>Yang, Zhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5792-4130</orcidid><orcidid>https://orcid.org/0000-0002-0276-4093</orcidid></search><sort><creationdate>20180501</creationdate><title>Compressed Acquisition and Denoising Recovery of EMGdi Signal in WSNs and IoT</title><author>Wu, Fei-Yun ; Yang, Kunde ; Yang, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-33ada21dbb01d5c94e46a2dde1c27929e8f947a7efb7b09fcad544e08a551e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximated <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> l_0</tex-math> </inline-formula> (AL0) norm</topic><topic>Compressed sensing</topic><topic>compressed sensing (CS)</topic><topic>diaphragmatic electromyogram (EMGdi)</topic><topic>electrocardiographic (ECG)</topic><topic>Electrocardiography</topic><topic>Energy consumption</topic><topic>Feasibility studies</topic><topic>Health care</topic><topic>Interference</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Methods</topic><topic>Miniaturization</topic><topic>Noise reduction</topic><topic>Pollution measurement</topic><topic>Remote sensors</topic><topic>Respiratory diseases</topic><topic>Wavelet analysis</topic><topic>Wireless sensor networks</topic><topic>wireless sensor networks (WSNs)</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Fei-Yun</creatorcontrib><creatorcontrib>Yang, Kunde</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Fei-Yun</au><au>Yang, Kunde</au><au>Yang, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressed Acquisition and Denoising Recovery of EMGdi Signal in WSNs and IoT</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>14</volume><issue>5</issue><spage>2210</spage><epage>2219</epage><pages>2210-2219</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Telemonitoring of diaphragmatic electromyogram (EMGdi) signal in wireless sensor networks (WSNs) and Internet of Things (IoT) holds the promise to be an evolving direction in personalized medicine. The WSNs and IoT enable EMGdi information telemonitoring and communications technologies play important roles in the process of personal medical care, especially for the respiratory diseases. However, while designing such a system, one should consider the required functionality, miniaturization, energy efficiency, etc., to make fewer resources required in WSNs and IoT. Conventional methods of data acquisition cannot energy-effectively compress data with reduced device costs. Different from the traditional compression methods, compressed sensing (CS) takes promising steps toward these challenges. Unfortunately, EMGdi is not sparse in time domain. Hence, current CS algorithms are extremely difficult to use directly for recovering EMGdi. In order to satisfy the requirements of applications of personal medical care in WSNs and IoT, this study proposes an approximated ι 0 norm based method to search the solution via the gradient descent method, then projects the searched solution to the reconstruction feasible set. Meanwhile, this study adopts a new wavelet threshold based method to denoise the electrocardiographic interference. Experimental results are provided to testify the performance of the proposed methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2017.2759185</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5792-4130</orcidid><orcidid>https://orcid.org/0000-0002-0276-4093</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2018-05, Vol.14 (5), p.2210-2219 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2017_2759185 |
source | IEEE Electronic Library (IEL) |
subjects | Approximated <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> l_0</tex-math> </inline-formula> (AL0) norm Compressed sensing compressed sensing (CS) diaphragmatic electromyogram (EMGdi) electrocardiographic (ECG) Electrocardiography Energy consumption Feasibility studies Health care Interference Internet of Things Internet of Things (IoT) Methods Miniaturization Noise reduction Pollution measurement Remote sensors Respiratory diseases Wavelet analysis Wireless sensor networks wireless sensor networks (WSNs) |
title | Compressed Acquisition and Denoising Recovery of EMGdi Signal in WSNs and IoT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressed%20Acquisition%20and%20Denoising%20Recovery%20of%20EMGdi%20Signal%20in%20WSNs%20and%20IoT&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Wu,%20Fei-Yun&rft.date=2018-05-01&rft.volume=14&rft.issue=5&rft.spage=2210&rft.epage=2219&rft.pages=2210-2219&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2017.2759185&rft_dat=%3Cproquest_RIE%3E2035272448%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2035272448&rft_id=info:pmid/&rft_ieee_id=8055609&rfr_iscdi=true |