A Triple Wing Harmonium Model for Movie Recommendation
A new triple wing harmonium (TWH) model that integrates text metadata into a low-dimensional semantic space is proposed for the application of content-based movie recommendation. The text metadata considered here include movie synopsis, actor list, and user comments. We develop a new TWH model proje...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2016-02, Vol.12 (1), p.231-239 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 1 |
container_start_page | 231 |
container_title | IEEE transactions on industrial informatics |
container_volume | 12 |
creator | Zhang, Haijun Ji, Yuzhu Li, Jingxuan Ye, Yunming |
description | A new triple wing harmonium (TWH) model that integrates text metadata into a low-dimensional semantic space is proposed for the application of content-based movie recommendation. The text metadata considered here include movie synopsis, actor list, and user comments. We develop a new TWH model projecting these multiple textual features into low-dimensional latent topics with different probability distribution assumptions. A contrastive divergence (CD) algorithm is used for efficient learning and inference. Experimental results suggest that the proposed method performs better than the state-of-the-art algorithms for movie recommendation. |
doi_str_mv | 10.1109/TII.2015.2475218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2015_2475218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7230268</ieee_id><sourcerecordid>4005705801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5d8c21d2bf96d79cb6ea5863194e768bdc1ec95644db1f33bcb615502d9dbd283</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC560zyebrWIraQkWQisewm2Qlpbup2Vbw3zelxdO8h-edGR5C7hEmiKCfVovFhALyCa0kp6guyAh1hSUAh8ucOceSUWDX5GYY1gBMAtMjIqbFKoXtxhdfof8u5nXqYh_2XfEWnd8UbUw5_QZffHgbu873rt6F2N-Sq7beDP7uPMfk8-V5NZuXy_fXxWy6LC3VuCu5U5aio02rhZPaNsLXXAmWP_NSqMZZ9FZzUVWuwZaxJhP5U6BOu8ZRxcbk8bR3m-LP3g87s4771OeTBqWUFQdUPFNwomyKw5B8a7YpdHX6MwjmaMdkO-Zox5zt5MrDqRK89_-4pAyoUOwAq_5e9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777450185</pqid></control><display><type>article</type><title>A Triple Wing Harmonium Model for Movie Recommendation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Haijun ; Ji, Yuzhu ; Li, Jingxuan ; Ye, Yunming</creator><creatorcontrib>Zhang, Haijun ; Ji, Yuzhu ; Li, Jingxuan ; Ye, Yunming</creatorcontrib><description>A new triple wing harmonium (TWH) model that integrates text metadata into a low-dimensional semantic space is proposed for the application of content-based movie recommendation. The text metadata considered here include movie synopsis, actor list, and user comments. We develop a new TWH model projecting these multiple textual features into low-dimensional latent topics with different probability distribution assumptions. A contrastive divergence (CD) algorithm is used for efficient learning and inference. Experimental results suggest that the proposed method performs better than the state-of-the-art algorithms for movie recommendation.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2015.2475218</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Data models ; Feature extraction ; Harmonium model ; Inference algorithms ; Motion pictures ; movie recommendation ; multiple features ; Neurons ; Semantics ; text metadata</subject><ispartof>IEEE transactions on industrial informatics, 2016-02, Vol.12 (1), p.231-239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5d8c21d2bf96d79cb6ea5863194e768bdc1ec95644db1f33bcb615502d9dbd283</citedby><cites>FETCH-LOGICAL-c291t-5d8c21d2bf96d79cb6ea5863194e768bdc1ec95644db1f33bcb615502d9dbd283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7230268$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7230268$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Ji, Yuzhu</creatorcontrib><creatorcontrib>Li, Jingxuan</creatorcontrib><creatorcontrib>Ye, Yunming</creatorcontrib><title>A Triple Wing Harmonium Model for Movie Recommendation</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>A new triple wing harmonium (TWH) model that integrates text metadata into a low-dimensional semantic space is proposed for the application of content-based movie recommendation. The text metadata considered here include movie synopsis, actor list, and user comments. We develop a new TWH model projecting these multiple textual features into low-dimensional latent topics with different probability distribution assumptions. A contrastive divergence (CD) algorithm is used for efficient learning and inference. Experimental results suggest that the proposed method performs better than the state-of-the-art algorithms for movie recommendation.</description><subject>Adaptation models</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Harmonium model</subject><subject>Inference algorithms</subject><subject>Motion pictures</subject><subject>movie recommendation</subject><subject>multiple features</subject><subject>Neurons</subject><subject>Semantics</subject><subject>text metadata</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC560zyebrWIraQkWQisewm2Qlpbup2Vbw3zelxdO8h-edGR5C7hEmiKCfVovFhALyCa0kp6guyAh1hSUAh8ucOceSUWDX5GYY1gBMAtMjIqbFKoXtxhdfof8u5nXqYh_2XfEWnd8UbUw5_QZffHgbu873rt6F2N-Sq7beDP7uPMfk8-V5NZuXy_fXxWy6LC3VuCu5U5aio02rhZPaNsLXXAmWP_NSqMZZ9FZzUVWuwZaxJhP5U6BOu8ZRxcbk8bR3m-LP3g87s4771OeTBqWUFQdUPFNwomyKw5B8a7YpdHX6MwjmaMdkO-Zox5zt5MrDqRK89_-4pAyoUOwAq_5e9g</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Zhang, Haijun</creator><creator>Ji, Yuzhu</creator><creator>Li, Jingxuan</creator><creator>Ye, Yunming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160201</creationdate><title>A Triple Wing Harmonium Model for Movie Recommendation</title><author>Zhang, Haijun ; Ji, Yuzhu ; Li, Jingxuan ; Ye, Yunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5d8c21d2bf96d79cb6ea5863194e768bdc1ec95644db1f33bcb615502d9dbd283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation models</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Harmonium model</topic><topic>Inference algorithms</topic><topic>Motion pictures</topic><topic>movie recommendation</topic><topic>multiple features</topic><topic>Neurons</topic><topic>Semantics</topic><topic>text metadata</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Ji, Yuzhu</creatorcontrib><creatorcontrib>Li, Jingxuan</creatorcontrib><creatorcontrib>Ye, Yunming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Haijun</au><au>Ji, Yuzhu</au><au>Li, Jingxuan</au><au>Ye, Yunming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Triple Wing Harmonium Model for Movie Recommendation</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>12</volume><issue>1</issue><spage>231</spage><epage>239</epage><pages>231-239</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>A new triple wing harmonium (TWH) model that integrates text metadata into a low-dimensional semantic space is proposed for the application of content-based movie recommendation. The text metadata considered here include movie synopsis, actor list, and user comments. We develop a new TWH model projecting these multiple textual features into low-dimensional latent topics with different probability distribution assumptions. A contrastive divergence (CD) algorithm is used for efficient learning and inference. Experimental results suggest that the proposed method performs better than the state-of-the-art algorithms for movie recommendation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2015.2475218</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2016-02, Vol.12 (1), p.231-239 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2015_2475218 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Data models Feature extraction Harmonium model Inference algorithms Motion pictures movie recommendation multiple features Neurons Semantics text metadata |
title | A Triple Wing Harmonium Model for Movie Recommendation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Triple%20Wing%20Harmonium%20Model%20for%20Movie%20Recommendation&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zhang,%20Haijun&rft.date=2016-02-01&rft.volume=12&rft.issue=1&rft.spage=231&rft.epage=239&rft.pages=231-239&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2015.2475218&rft_dat=%3Cproquest_RIE%3E4005705801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777450185&rft_id=info:pmid/&rft_ieee_id=7230268&rfr_iscdi=true |