Semantic Deep Hiding for Robust Unlearnable Examples
Ensuring data privacy and protection has become paramount in the era of deep learning. Unlearnable examples are proposed to mislead the deep learning models and prevent data from unauthorized exploration by adding small perturbations to data. However, such perturbations (e.g., noise, texture, color...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2024, Vol.19, p.6545-6558 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6558 |
---|---|
container_issue | |
container_start_page | 6545 |
container_title | IEEE transactions on information forensics and security |
container_volume | 19 |
creator | Meng, Ruohan Yi, Chenyu Yu, Yi Yang, Siyuan Shen, Bingquan Kot, Alex C. |
description | Ensuring data privacy and protection has become paramount in the era of deep learning. Unlearnable examples are proposed to mislead the deep learning models and prevent data from unauthorized exploration by adding small perturbations to data. However, such perturbations (e.g., noise, texture, color change) predominantly impact low-level features, making them vulnerable to common countermeasures. In contrast, semantic images with intricate shapes have a wealth of high-level features, making them more resilient to countermeasures and potential for producing robust unlearnable examples. In this paper, we propose a Deep Hiding (DH) scheme that adaptively hides semantic images enriched with high-level features. We employ an Invertible Neural Network (INN) to invisibly integrate predefined images, inherently hiding them with deceptive perturbations. To enhance data unlearnability, we introduce a Latent Feature Concentration module, designed to work with the INN, regularizing the intra-class variance of these perturbations. To further boost the robustness of unlearnable examples, we design a Semantic Images Generation module that produces hidden semantic images. By utilizing similar semantic information, this module generates similar semantic images for samples within the same classes, thereby enlarging the inter-class distance and narrowing the intra-class distance. Extensive experiments on CIFAR-10, CIFAR-100, and an ImageNet subset, against 18 countermeasures, reveal that our proposed method exhibits outstanding robustness for unlearnable examples, demonstrating its efficacy in preventing unauthorized data exploitation. |
doi_str_mv | 10.1109/TIFS.2024.3421273 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIFS_2024_3421273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10578062</ieee_id><sourcerecordid>3076060050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-7b35f5217ca35d9b26b4c64e3a37ea0af44c11a0b77152ef2820da9b8d2eecc3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRsFZ_gOAi4Dr1vflMllJbWygItq6HmcmLpKRJzKSg_96WFnH17uLcy-Mwdo8wQYT8abOcryccuJwIyZEbccFGqJRONXC8_MsortlNjFsAKVFnIybXtHPNUIXkhahLFlVRNZ9J2fbJe-v3cUg-mppc3zhfUzL7druupnjLrkpXR7o73zHbzGeb6SJdvb0up8-rNHDMh9R4oUrF0QQnVJF7rr0MWpJwwpADV0oZEB14Y1BxKnnGoXC5zwpOFIIYs8fTbNe3X3uKg922-8MrdbQCjAYNoOBA4YkKfRtjT6Xt-mrn-h-LYI9u7NGNPbqxZzeHzsOpUxHRP16ZDDQXv8eEXvk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076060050</pqid></control><display><type>article</type><title>Semantic Deep Hiding for Robust Unlearnable Examples</title><source>IEEE Electronic Library (IEL)</source><creator>Meng, Ruohan ; Yi, Chenyu ; Yu, Yi ; Yang, Siyuan ; Shen, Bingquan ; Kot, Alex C.</creator><creatorcontrib>Meng, Ruohan ; Yi, Chenyu ; Yu, Yi ; Yang, Siyuan ; Shen, Bingquan ; Kot, Alex C.</creatorcontrib><description>Ensuring data privacy and protection has become paramount in the era of deep learning. Unlearnable examples are proposed to mislead the deep learning models and prevent data from unauthorized exploration by adding small perturbations to data. However, such perturbations (e.g., noise, texture, color change) predominantly impact low-level features, making them vulnerable to common countermeasures. In contrast, semantic images with intricate shapes have a wealth of high-level features, making them more resilient to countermeasures and potential for producing robust unlearnable examples. In this paper, we propose a Deep Hiding (DH) scheme that adaptively hides semantic images enriched with high-level features. We employ an Invertible Neural Network (INN) to invisibly integrate predefined images, inherently hiding them with deceptive perturbations. To enhance data unlearnability, we introduce a Latent Feature Concentration module, designed to work with the INN, regularizing the intra-class variance of these perturbations. To further boost the robustness of unlearnable examples, we design a Semantic Images Generation module that produces hidden semantic images. By utilizing similar semantic information, this module generates similar semantic images for samples within the same classes, thereby enlarging the inter-class distance and narrowing the intra-class distance. Extensive experiments on CIFAR-10, CIFAR-100, and an ImageNet subset, against 18 countermeasures, reveal that our proposed method exhibits outstanding robustness for unlearnable examples, demonstrating its efficacy in preventing unauthorized data exploitation.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2024.3421273</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Data models ; deep hiding ; Deep learning ; Effectiveness ; general robustness ; Image contrast ; Image enhancement ; Modules ; Neural networks ; Perturbation ; Perturbation methods ; Robustness ; semantic images ; Semantics ; Training ; Unlearnable examples</subject><ispartof>IEEE transactions on information forensics and security, 2024, Vol.19, p.6545-6558</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-7b35f5217ca35d9b26b4c64e3a37ea0af44c11a0b77152ef2820da9b8d2eecc3</cites><orcidid>0000-0001-5002-6549 ; 0000-0003-4681-0431 ; 0009-0006-6442-551X ; 0000-0001-6262-8125 ; 0000-0003-2730-9553 ; 0000-0003-4221-0842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10578062$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10578062$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meng, Ruohan</creatorcontrib><creatorcontrib>Yi, Chenyu</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Yang, Siyuan</creatorcontrib><creatorcontrib>Shen, Bingquan</creatorcontrib><creatorcontrib>Kot, Alex C.</creatorcontrib><title>Semantic Deep Hiding for Robust Unlearnable Examples</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Ensuring data privacy and protection has become paramount in the era of deep learning. Unlearnable examples are proposed to mislead the deep learning models and prevent data from unauthorized exploration by adding small perturbations to data. However, such perturbations (e.g., noise, texture, color change) predominantly impact low-level features, making them vulnerable to common countermeasures. In contrast, semantic images with intricate shapes have a wealth of high-level features, making them more resilient to countermeasures and potential for producing robust unlearnable examples. In this paper, we propose a Deep Hiding (DH) scheme that adaptively hides semantic images enriched with high-level features. We employ an Invertible Neural Network (INN) to invisibly integrate predefined images, inherently hiding them with deceptive perturbations. To enhance data unlearnability, we introduce a Latent Feature Concentration module, designed to work with the INN, regularizing the intra-class variance of these perturbations. To further boost the robustness of unlearnable examples, we design a Semantic Images Generation module that produces hidden semantic images. By utilizing similar semantic information, this module generates similar semantic images for samples within the same classes, thereby enlarging the inter-class distance and narrowing the intra-class distance. Extensive experiments on CIFAR-10, CIFAR-100, and an ImageNet subset, against 18 countermeasures, reveal that our proposed method exhibits outstanding robustness for unlearnable examples, demonstrating its efficacy in preventing unauthorized data exploitation.</description><subject>Adaptation models</subject><subject>Data models</subject><subject>deep hiding</subject><subject>Deep learning</subject><subject>Effectiveness</subject><subject>general robustness</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Robustness</subject><subject>semantic images</subject><subject>Semantics</subject><subject>Training</subject><subject>Unlearnable examples</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AURQdRsFZ_gOAi4Dr1vflMllJbWygItq6HmcmLpKRJzKSg_96WFnH17uLcy-Mwdo8wQYT8abOcryccuJwIyZEbccFGqJRONXC8_MsortlNjFsAKVFnIybXtHPNUIXkhahLFlVRNZ9J2fbJe-v3cUg-mppc3zhfUzL7druupnjLrkpXR7o73zHbzGeb6SJdvb0up8-rNHDMh9R4oUrF0QQnVJF7rr0MWpJwwpADV0oZEB14Y1BxKnnGoXC5zwpOFIIYs8fTbNe3X3uKg922-8MrdbQCjAYNoOBA4YkKfRtjT6Xt-mrn-h-LYI9u7NGNPbqxZzeHzsOpUxHRP16ZDDQXv8eEXvk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Meng, Ruohan</creator><creator>Yi, Chenyu</creator><creator>Yu, Yi</creator><creator>Yang, Siyuan</creator><creator>Shen, Bingquan</creator><creator>Kot, Alex C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5002-6549</orcidid><orcidid>https://orcid.org/0000-0003-4681-0431</orcidid><orcidid>https://orcid.org/0009-0006-6442-551X</orcidid><orcidid>https://orcid.org/0000-0001-6262-8125</orcidid><orcidid>https://orcid.org/0000-0003-2730-9553</orcidid><orcidid>https://orcid.org/0000-0003-4221-0842</orcidid></search><sort><creationdate>2024</creationdate><title>Semantic Deep Hiding for Robust Unlearnable Examples</title><author>Meng, Ruohan ; Yi, Chenyu ; Yu, Yi ; Yang, Siyuan ; Shen, Bingquan ; Kot, Alex C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-7b35f5217ca35d9b26b4c64e3a37ea0af44c11a0b77152ef2820da9b8d2eecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Data models</topic><topic>deep hiding</topic><topic>Deep learning</topic><topic>Effectiveness</topic><topic>general robustness</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Robustness</topic><topic>semantic images</topic><topic>Semantics</topic><topic>Training</topic><topic>Unlearnable examples</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Ruohan</creatorcontrib><creatorcontrib>Yi, Chenyu</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Yang, Siyuan</creatorcontrib><creatorcontrib>Shen, Bingquan</creatorcontrib><creatorcontrib>Kot, Alex C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meng, Ruohan</au><au>Yi, Chenyu</au><au>Yu, Yi</au><au>Yang, Siyuan</au><au>Shen, Bingquan</au><au>Kot, Alex C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic Deep Hiding for Robust Unlearnable Examples</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2024</date><risdate>2024</risdate><volume>19</volume><spage>6545</spage><epage>6558</epage><pages>6545-6558</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Ensuring data privacy and protection has become paramount in the era of deep learning. Unlearnable examples are proposed to mislead the deep learning models and prevent data from unauthorized exploration by adding small perturbations to data. However, such perturbations (e.g., noise, texture, color change) predominantly impact low-level features, making them vulnerable to common countermeasures. In contrast, semantic images with intricate shapes have a wealth of high-level features, making them more resilient to countermeasures and potential for producing robust unlearnable examples. In this paper, we propose a Deep Hiding (DH) scheme that adaptively hides semantic images enriched with high-level features. We employ an Invertible Neural Network (INN) to invisibly integrate predefined images, inherently hiding them with deceptive perturbations. To enhance data unlearnability, we introduce a Latent Feature Concentration module, designed to work with the INN, regularizing the intra-class variance of these perturbations. To further boost the robustness of unlearnable examples, we design a Semantic Images Generation module that produces hidden semantic images. By utilizing similar semantic information, this module generates similar semantic images for samples within the same classes, thereby enlarging the inter-class distance and narrowing the intra-class distance. Extensive experiments on CIFAR-10, CIFAR-100, and an ImageNet subset, against 18 countermeasures, reveal that our proposed method exhibits outstanding robustness for unlearnable examples, demonstrating its efficacy in preventing unauthorized data exploitation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2024.3421273</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5002-6549</orcidid><orcidid>https://orcid.org/0000-0003-4681-0431</orcidid><orcidid>https://orcid.org/0009-0006-6442-551X</orcidid><orcidid>https://orcid.org/0000-0001-6262-8125</orcidid><orcidid>https://orcid.org/0000-0003-2730-9553</orcidid><orcidid>https://orcid.org/0000-0003-4221-0842</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2024, Vol.19, p.6545-6558 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIFS_2024_3421273 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Data models deep hiding Deep learning Effectiveness general robustness Image contrast Image enhancement Modules Neural networks Perturbation Perturbation methods Robustness semantic images Semantics Training Unlearnable examples |
title | Semantic Deep Hiding for Robust Unlearnable Examples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20Deep%20Hiding%20for%20Robust%20Unlearnable%20Examples&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Meng,%20Ruohan&rft.date=2024&rft.volume=19&rft.spage=6545&rft.epage=6558&rft.pages=6545-6558&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2024.3421273&rft_dat=%3Cproquest_RIE%3E3076060050%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076060050&rft_id=info:pmid/&rft_ieee_id=10578062&rfr_iscdi=true |