Attacking Mouse Dynamics Authentication using Novel Wasserstein Conditional DCGAN

Behavioral biometrics is an emerging trend due to their cost-effectiveness and non-intrusive implementations that support remote access for user identification. This is the case especially in recent times of social distancing and working from home arrangements, where online attendance is the preferr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2023-01, Vol.18, p.1-1
Hauptverfasser: Roy, Arunava, Wong, KokSheik, Phan, Raphael C. -W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on information forensics and security
container_volume 18
creator Roy, Arunava
Wong, KokSheik
Phan, Raphael C. -W
description Behavioral biometrics is an emerging trend due to their cost-effectiveness and non-intrusive implementations that support remote access for user identification. This is the case especially in recent times of social distancing and working from home arrangements, where online attendance is the preferred option in contrast to physical presence. In this work, we explore the limitations of mouse dynamics authentication by impersonating legitimate user mouse action sequences. Specifically, towards that aim, we develop a novel generative WC-DCGAN model to generate highly accurate fake user action sequences. We apply our WC-DCGAN to this problem and show that it causes the target classifier can be tricked into identifying a fraudster as a legitimate user. WC-DCGAN has several benefits, including: achieving dominated convergence, hence implying the existence of solutions and optimal discriminator regardless of data and generator distributions; and acting as an unsupervised model for a fixed class label and generator. Experiments are conducted to verify these points. Subsequently, we analyzed the cause of misclassifications, and propose a novel mouse dynamics strategy that offers much tighter authentication with significant reductions in misclassification events.
doi_str_mv 10.1109/TIFS.2023.3245418
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIFS_2023_3245418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10044715</ieee_id><sourcerecordid>2828001481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-451d6157fb3e640b80d97edcfcf3ae46d057c97762e90993f968e9ec9520a49e3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRsFZ_gOAi4Dp1vpNZhtTWQq2IFZfDdPKiU9ukZiaF_nsTWsTVu4tzL4-D0C3BI0KweljOJm8jiikbMcoFJ-kZGhAhZCwxJed_mbBLdOX9GmPOiUwH6DULwdhvV31Gz3XrIRofKrN11kdZG76gCs6a4Ooqan3PLOo9bKIP4z00PoCroryuCtcTZhON82m2uEYXpdl4uDndIXqfPC7zp3j-Mp3l2Ty2VPEQc0EKSURSrhhIjlcpLlQChS1tyQxwWWCRWJUkkoLCSrFSyRQUWCUoNlwBG6L74-6uqX9a8EGv67bp3vCapjTFmPCUdBQ5UrapvW-g1LvGbU1z0ATr3pzuzenenD6Z6zp3x44DgH985ywhgv0CBFpp1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828001481</pqid></control><display><type>article</type><title>Attacking Mouse Dynamics Authentication using Novel Wasserstein Conditional DCGAN</title><source>IEEE Electronic Library (IEL)</source><creator>Roy, Arunava ; Wong, KokSheik ; Phan, Raphael C. -W</creator><creatorcontrib>Roy, Arunava ; Wong, KokSheik ; Phan, Raphael C. -W</creatorcontrib><description>Behavioral biometrics is an emerging trend due to their cost-effectiveness and non-intrusive implementations that support remote access for user identification. This is the case especially in recent times of social distancing and working from home arrangements, where online attendance is the preferred option in contrast to physical presence. In this work, we explore the limitations of mouse dynamics authentication by impersonating legitimate user mouse action sequences. Specifically, towards that aim, we develop a novel generative WC-DCGAN model to generate highly accurate fake user action sequences. We apply our WC-DCGAN to this problem and show that it causes the target classifier can be tricked into identifying a fraudster as a legitimate user. WC-DCGAN has several benefits, including: achieving dominated convergence, hence implying the existence of solutions and optimal discriminator regardless of data and generator distributions; and acting as an unsupervised model for a fixed class label and generator. Experiments are conducted to verify these points. Subsequently, we analyzed the cause of misclassifications, and propose a novel mouse dynamics strategy that offers much tighter authentication with significant reductions in misclassification events.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2023.3245418</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Authentication ; GANs ; Mouse Dynamics ; WC-DCGAN</subject><ispartof>IEEE transactions on information forensics and security, 2023-01, Vol.18, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-451d6157fb3e640b80d97edcfcf3ae46d057c97762e90993f968e9ec9520a49e3</citedby><cites>FETCH-LOGICAL-c294t-451d6157fb3e640b80d97edcfcf3ae46d057c97762e90993f968e9ec9520a49e3</cites><orcidid>0000-0002-4893-2291 ; 0000-0003-3523-1960 ; 0000-0001-7448-4595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10044715$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10044715$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roy, Arunava</creatorcontrib><creatorcontrib>Wong, KokSheik</creatorcontrib><creatorcontrib>Phan, Raphael C. -W</creatorcontrib><title>Attacking Mouse Dynamics Authentication using Novel Wasserstein Conditional DCGAN</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Behavioral biometrics is an emerging trend due to their cost-effectiveness and non-intrusive implementations that support remote access for user identification. This is the case especially in recent times of social distancing and working from home arrangements, where online attendance is the preferred option in contrast to physical presence. In this work, we explore the limitations of mouse dynamics authentication by impersonating legitimate user mouse action sequences. Specifically, towards that aim, we develop a novel generative WC-DCGAN model to generate highly accurate fake user action sequences. We apply our WC-DCGAN to this problem and show that it causes the target classifier can be tricked into identifying a fraudster as a legitimate user. WC-DCGAN has several benefits, including: achieving dominated convergence, hence implying the existence of solutions and optimal discriminator regardless of data and generator distributions; and acting as an unsupervised model for a fixed class label and generator. Experiments are conducted to verify these points. Subsequently, we analyzed the cause of misclassifications, and propose a novel mouse dynamics strategy that offers much tighter authentication with significant reductions in misclassification events.</description><subject>Authentication</subject><subject>GANs</subject><subject>Mouse Dynamics</subject><subject>WC-DCGAN</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AURQdRsFZ_gOAi4Dp1vpNZhtTWQq2IFZfDdPKiU9ukZiaF_nsTWsTVu4tzL4-D0C3BI0KweljOJm8jiikbMcoFJ-kZGhAhZCwxJed_mbBLdOX9GmPOiUwH6DULwdhvV31Gz3XrIRofKrN11kdZG76gCs6a4Ooqan3PLOo9bKIP4z00PoCroryuCtcTZhON82m2uEYXpdl4uDndIXqfPC7zp3j-Mp3l2Ty2VPEQc0EKSURSrhhIjlcpLlQChS1tyQxwWWCRWJUkkoLCSrFSyRQUWCUoNlwBG6L74-6uqX9a8EGv67bp3vCapjTFmPCUdBQ5UrapvW-g1LvGbU1z0ATr3pzuzenenD6Z6zp3x44DgH985ywhgv0CBFpp1A</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Roy, Arunava</creator><creator>Wong, KokSheik</creator><creator>Phan, Raphael C. -W</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4893-2291</orcidid><orcidid>https://orcid.org/0000-0003-3523-1960</orcidid><orcidid>https://orcid.org/0000-0001-7448-4595</orcidid></search><sort><creationdate>20230101</creationdate><title>Attacking Mouse Dynamics Authentication using Novel Wasserstein Conditional DCGAN</title><author>Roy, Arunava ; Wong, KokSheik ; Phan, Raphael C. -W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-451d6157fb3e640b80d97edcfcf3ae46d057c97762e90993f968e9ec9520a49e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Authentication</topic><topic>GANs</topic><topic>Mouse Dynamics</topic><topic>WC-DCGAN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Arunava</creatorcontrib><creatorcontrib>Wong, KokSheik</creatorcontrib><creatorcontrib>Phan, Raphael C. -W</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, Arunava</au><au>Wong, KokSheik</au><au>Phan, Raphael C. -W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attacking Mouse Dynamics Authentication using Novel Wasserstein Conditional DCGAN</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>18</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Behavioral biometrics is an emerging trend due to their cost-effectiveness and non-intrusive implementations that support remote access for user identification. This is the case especially in recent times of social distancing and working from home arrangements, where online attendance is the preferred option in contrast to physical presence. In this work, we explore the limitations of mouse dynamics authentication by impersonating legitimate user mouse action sequences. Specifically, towards that aim, we develop a novel generative WC-DCGAN model to generate highly accurate fake user action sequences. We apply our WC-DCGAN to this problem and show that it causes the target classifier can be tricked into identifying a fraudster as a legitimate user. WC-DCGAN has several benefits, including: achieving dominated convergence, hence implying the existence of solutions and optimal discriminator regardless of data and generator distributions; and acting as an unsupervised model for a fixed class label and generator. Experiments are conducted to verify these points. Subsequently, we analyzed the cause of misclassifications, and propose a novel mouse dynamics strategy that offers much tighter authentication with significant reductions in misclassification events.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2023.3245418</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4893-2291</orcidid><orcidid>https://orcid.org/0000-0003-3523-1960</orcidid><orcidid>https://orcid.org/0000-0001-7448-4595</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2023-01, Vol.18, p.1-1
issn 1556-6013
1556-6021
language eng
recordid cdi_crossref_primary_10_1109_TIFS_2023_3245418
source IEEE Electronic Library (IEL)
subjects Authentication
GANs
Mouse Dynamics
WC-DCGAN
title Attacking Mouse Dynamics Authentication using Novel Wasserstein Conditional DCGAN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attacking%20Mouse%20Dynamics%20Authentication%20using%20Novel%20Wasserstein%20Conditional%20DCGAN&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Roy,%20Arunava&rft.date=2023-01-01&rft.volume=18&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2023.3245418&rft_dat=%3Cproquest_RIE%3E2828001481%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828001481&rft_id=info:pmid/&rft_ieee_id=10044715&rfr_iscdi=true