Learning Compact Multirepresentation Feature Descriptor for Finger-Vein Recognition

Due to its high anti-counterfeiting and universality, the use of finger-vein pattern for identity authentication has recently attracted extensive attention in academia and industry. Despite recent advances in finger-vein recognition, most of the hand-crafted descriptors require strong prior knowledg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2022, Vol.17, p.1946-1958
Hauptverfasser: Li, Shuyi, Ma, Ruijun, Fei, Lunke, Zhang, Bob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1958
container_issue
container_start_page 1946
container_title IEEE transactions on information forensics and security
container_volume 17
creator Li, Shuyi
Ma, Ruijun
Fei, Lunke
Zhang, Bob
description Due to its high anti-counterfeiting and universality, the use of finger-vein pattern for identity authentication has recently attracted extensive attention in academia and industry. Despite recent advances in finger-vein recognition, most of the hand-crafted descriptors require strong prior knowledge, which may be ineffective in expressing its distinctiveness. In this paper, we present a novel compact multi-representation feature descriptor (CMrFD) with visual and semantic consistency, for finger-vein feature representation. Given the finger-vein images, we first form two-view representations to describe the informative vein features in local patches. Then, we jointly learn a feature transformation to map the two-view representations into discriminative binary codes. For the projection function, we linearly combine multi-view information and minimize the quantization error between the projected binary features and the original real-valued features. In terms of visual consistency, we minimize the Euclidean distance of each representation from the same class, at the same time, maximize the Euclidean distance from different classes in the projected space. Semantic consistency is used to ensure that similar images have compact multi-representation combined projection features. Lastly, we calculate the block-wise histograms as the final extracted features for finger-vein recognition. Experimental results on four widely used finger-vein databases demonstrate that the proposed method outperforms the state-of-the-art finger-vein recognition methods.
doi_str_mv 10.1109/TIFS.2022.3172218
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIFS_2022_3172218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9772684</ieee_id><sourcerecordid>2672099582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f404f551acf30d22ecaf568b5b1db1541ded0ab1f833c81c4e446eda7da9d1ae3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aycd-HKW6WqgItnoN2eykpLS7a5Ie_Pfu0tLD8M7heWfgIeQe6AyAlk_rRbWaMcrYjEPOGBQXZAJSZmlGGVyed-DX5CaELaVCQFZMyGqJ2reu3STzbt9rE5OPwy46j73HgG3U0XVtUqGOB4_JCwbjXR87n9hhqqGHPv1B1yZfaLpN60b8llxZvQt4d8op-a5e1_P3dPn5tpg_L1PDSh5TK6iwUoI2ltOGMTTayqyoZQ1NDVJAgw3VNdiCc1OAEShEho3OG102oJFPyePxbu-73wOGqLbdwbfDS8WynNGylAUbKDhSxncheLSq926v_Z8CqkZ3anSnRnfq5G7oPBw7DhHPfJnnLCsE_wf0lmxt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672099582</pqid></control><display><type>article</type><title>Learning Compact Multirepresentation Feature Descriptor for Finger-Vein Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Shuyi ; Ma, Ruijun ; Fei, Lunke ; Zhang, Bob</creator><creatorcontrib>Li, Shuyi ; Ma, Ruijun ; Fei, Lunke ; Zhang, Bob</creatorcontrib><description>Due to its high anti-counterfeiting and universality, the use of finger-vein pattern for identity authentication has recently attracted extensive attention in academia and industry. Despite recent advances in finger-vein recognition, most of the hand-crafted descriptors require strong prior knowledge, which may be ineffective in expressing its distinctiveness. In this paper, we present a novel compact multi-representation feature descriptor (CMrFD) with visual and semantic consistency, for finger-vein feature representation. Given the finger-vein images, we first form two-view representations to describe the informative vein features in local patches. Then, we jointly learn a feature transformation to map the two-view representations into discriminative binary codes. For the projection function, we linearly combine multi-view information and minimize the quantization error between the projected binary features and the original real-valued features. In terms of visual consistency, we minimize the Euclidean distance of each representation from the same class, at the same time, maximize the Euclidean distance from different classes in the projected space. Semantic consistency is used to ensure that similar images have compact multi-representation combined projection features. Lastly, we calculate the block-wise histograms as the final extracted features for finger-vein recognition. Experimental results on four widely used finger-vein databases demonstrate that the proposed method outperforms the state-of-the-art finger-vein recognition methods.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2022.3172218</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Binary codes ; Consistency ; Euclidean geometry ; Feature extraction ; Feature recognition ; feature transformation ; finger-vein recognition ; Histograms ; Learning systems ; Multi-representation ; Representations ; Semantics ; visual and semantic consistency ; Visualization</subject><ispartof>IEEE transactions on information forensics and security, 2022, Vol.17, p.1946-1958</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f404f551acf30d22ecaf568b5b1db1541ded0ab1f833c81c4e446eda7da9d1ae3</citedby><cites>FETCH-LOGICAL-c293t-f404f551acf30d22ecaf568b5b1db1541ded0ab1f833c81c4e446eda7da9d1ae3</cites><orcidid>0000-0001-5628-6237 ; 0000-0001-6876-8153 ; 0000-0001-6072-7875 ; 0000-0001-6264-9006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9772684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,4028,27932,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9772684$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Shuyi</creatorcontrib><creatorcontrib>Ma, Ruijun</creatorcontrib><creatorcontrib>Fei, Lunke</creatorcontrib><creatorcontrib>Zhang, Bob</creatorcontrib><title>Learning Compact Multirepresentation Feature Descriptor for Finger-Vein Recognition</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Due to its high anti-counterfeiting and universality, the use of finger-vein pattern for identity authentication has recently attracted extensive attention in academia and industry. Despite recent advances in finger-vein recognition, most of the hand-crafted descriptors require strong prior knowledge, which may be ineffective in expressing its distinctiveness. In this paper, we present a novel compact multi-representation feature descriptor (CMrFD) with visual and semantic consistency, for finger-vein feature representation. Given the finger-vein images, we first form two-view representations to describe the informative vein features in local patches. Then, we jointly learn a feature transformation to map the two-view representations into discriminative binary codes. For the projection function, we linearly combine multi-view information and minimize the quantization error between the projected binary features and the original real-valued features. In terms of visual consistency, we minimize the Euclidean distance of each representation from the same class, at the same time, maximize the Euclidean distance from different classes in the projected space. Semantic consistency is used to ensure that similar images have compact multi-representation combined projection features. Lastly, we calculate the block-wise histograms as the final extracted features for finger-vein recognition. Experimental results on four widely used finger-vein databases demonstrate that the proposed method outperforms the state-of-the-art finger-vein recognition methods.</description><subject>Binary codes</subject><subject>Consistency</subject><subject>Euclidean geometry</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>feature transformation</subject><subject>finger-vein recognition</subject><subject>Histograms</subject><subject>Learning systems</subject><subject>Multi-representation</subject><subject>Representations</subject><subject>Semantics</subject><subject>visual and semantic consistency</subject><subject>Visualization</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aycd-HKW6WqgItnoN2eykpLS7a5Ie_Pfu0tLD8M7heWfgIeQe6AyAlk_rRbWaMcrYjEPOGBQXZAJSZmlGGVyed-DX5CaELaVCQFZMyGqJ2reu3STzbt9rE5OPwy46j73HgG3U0XVtUqGOB4_JCwbjXR87n9hhqqGHPv1B1yZfaLpN60b8llxZvQt4d8op-a5e1_P3dPn5tpg_L1PDSh5TK6iwUoI2ltOGMTTayqyoZQ1NDVJAgw3VNdiCc1OAEShEho3OG102oJFPyePxbu-73wOGqLbdwbfDS8WynNGylAUbKDhSxncheLSq926v_Z8CqkZ3anSnRnfq5G7oPBw7DhHPfJnnLCsE_wf0lmxt</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Li, Shuyi</creator><creator>Ma, Ruijun</creator><creator>Fei, Lunke</creator><creator>Zhang, Bob</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5628-6237</orcidid><orcidid>https://orcid.org/0000-0001-6876-8153</orcidid><orcidid>https://orcid.org/0000-0001-6072-7875</orcidid><orcidid>https://orcid.org/0000-0001-6264-9006</orcidid></search><sort><creationdate>2022</creationdate><title>Learning Compact Multirepresentation Feature Descriptor for Finger-Vein Recognition</title><author>Li, Shuyi ; Ma, Ruijun ; Fei, Lunke ; Zhang, Bob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f404f551acf30d22ecaf568b5b1db1541ded0ab1f833c81c4e446eda7da9d1ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binary codes</topic><topic>Consistency</topic><topic>Euclidean geometry</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>feature transformation</topic><topic>finger-vein recognition</topic><topic>Histograms</topic><topic>Learning systems</topic><topic>Multi-representation</topic><topic>Representations</topic><topic>Semantics</topic><topic>visual and semantic consistency</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuyi</creatorcontrib><creatorcontrib>Ma, Ruijun</creatorcontrib><creatorcontrib>Fei, Lunke</creatorcontrib><creatorcontrib>Zhang, Bob</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Shuyi</au><au>Ma, Ruijun</au><au>Fei, Lunke</au><au>Zhang, Bob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Compact Multirepresentation Feature Descriptor for Finger-Vein Recognition</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2022</date><risdate>2022</risdate><volume>17</volume><spage>1946</spage><epage>1958</epage><pages>1946-1958</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Due to its high anti-counterfeiting and universality, the use of finger-vein pattern for identity authentication has recently attracted extensive attention in academia and industry. Despite recent advances in finger-vein recognition, most of the hand-crafted descriptors require strong prior knowledge, which may be ineffective in expressing its distinctiveness. In this paper, we present a novel compact multi-representation feature descriptor (CMrFD) with visual and semantic consistency, for finger-vein feature representation. Given the finger-vein images, we first form two-view representations to describe the informative vein features in local patches. Then, we jointly learn a feature transformation to map the two-view representations into discriminative binary codes. For the projection function, we linearly combine multi-view information and minimize the quantization error between the projected binary features and the original real-valued features. In terms of visual consistency, we minimize the Euclidean distance of each representation from the same class, at the same time, maximize the Euclidean distance from different classes in the projected space. Semantic consistency is used to ensure that similar images have compact multi-representation combined projection features. Lastly, we calculate the block-wise histograms as the final extracted features for finger-vein recognition. Experimental results on four widely used finger-vein databases demonstrate that the proposed method outperforms the state-of-the-art finger-vein recognition methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2022.3172218</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5628-6237</orcidid><orcidid>https://orcid.org/0000-0001-6876-8153</orcidid><orcidid>https://orcid.org/0000-0001-6072-7875</orcidid><orcidid>https://orcid.org/0000-0001-6264-9006</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2022, Vol.17, p.1946-1958
issn 1556-6013
1556-6021
language eng
recordid cdi_crossref_primary_10_1109_TIFS_2022_3172218
source IEEE Electronic Library (IEL)
subjects Binary codes
Consistency
Euclidean geometry
Feature extraction
Feature recognition
feature transformation
finger-vein recognition
Histograms
Learning systems
Multi-representation
Representations
Semantics
visual and semantic consistency
Visualization
title Learning Compact Multirepresentation Feature Descriptor for Finger-Vein Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T23%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Compact%20Multirepresentation%20Feature%20Descriptor%20for%20Finger-Vein%20Recognition&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Li,%20Shuyi&rft.date=2022&rft.volume=17&rft.spage=1946&rft.epage=1958&rft.pages=1946-1958&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2022.3172218&rft_dat=%3Cproquest_RIE%3E2672099582%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672099582&rft_id=info:pmid/&rft_ieee_id=9772684&rfr_iscdi=true