Learning Compact Multirepresentation Feature Descriptor for Finger-Vein Recognition
Due to its high anti-counterfeiting and universality, the use of finger-vein pattern for identity authentication has recently attracted extensive attention in academia and industry. Despite recent advances in finger-vein recognition, most of the hand-crafted descriptors require strong prior knowledg...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2022, Vol.17, p.1946-1958 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1958 |
---|---|
container_issue | |
container_start_page | 1946 |
container_title | IEEE transactions on information forensics and security |
container_volume | 17 |
creator | Li, Shuyi Ma, Ruijun Fei, Lunke Zhang, Bob |
description | Due to its high anti-counterfeiting and universality, the use of finger-vein pattern for identity authentication has recently attracted extensive attention in academia and industry. Despite recent advances in finger-vein recognition, most of the hand-crafted descriptors require strong prior knowledge, which may be ineffective in expressing its distinctiveness. In this paper, we present a novel compact multi-representation feature descriptor (CMrFD) with visual and semantic consistency, for finger-vein feature representation. Given the finger-vein images, we first form two-view representations to describe the informative vein features in local patches. Then, we jointly learn a feature transformation to map the two-view representations into discriminative binary codes. For the projection function, we linearly combine multi-view information and minimize the quantization error between the projected binary features and the original real-valued features. In terms of visual consistency, we minimize the Euclidean distance of each representation from the same class, at the same time, maximize the Euclidean distance from different classes in the projected space. Semantic consistency is used to ensure that similar images have compact multi-representation combined projection features. Lastly, we calculate the block-wise histograms as the final extracted features for finger-vein recognition. Experimental results on four widely used finger-vein databases demonstrate that the proposed method outperforms the state-of-the-art finger-vein recognition methods. |
doi_str_mv | 10.1109/TIFS.2022.3172218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIFS_2022_3172218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9772684</ieee_id><sourcerecordid>2672099582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f404f551acf30d22ecaf568b5b1db1541ded0ab1f833c81c4e446eda7da9d1ae3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aycd-HKW6WqgItnoN2eykpLS7a5Ie_Pfu0tLD8M7heWfgIeQe6AyAlk_rRbWaMcrYjEPOGBQXZAJSZmlGGVyed-DX5CaELaVCQFZMyGqJ2reu3STzbt9rE5OPwy46j73HgG3U0XVtUqGOB4_JCwbjXR87n9hhqqGHPv1B1yZfaLpN60b8llxZvQt4d8op-a5e1_P3dPn5tpg_L1PDSh5TK6iwUoI2ltOGMTTayqyoZQ1NDVJAgw3VNdiCc1OAEShEho3OG102oJFPyePxbu-73wOGqLbdwbfDS8WynNGylAUbKDhSxncheLSq926v_Z8CqkZ3anSnRnfq5G7oPBw7DhHPfJnnLCsE_wf0lmxt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672099582</pqid></control><display><type>article</type><title>Learning Compact Multirepresentation Feature Descriptor for Finger-Vein Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Shuyi ; Ma, Ruijun ; Fei, Lunke ; Zhang, Bob</creator><creatorcontrib>Li, Shuyi ; Ma, Ruijun ; Fei, Lunke ; Zhang, Bob</creatorcontrib><description>Due to its high anti-counterfeiting and universality, the use of finger-vein pattern for identity authentication has recently attracted extensive attention in academia and industry. Despite recent advances in finger-vein recognition, most of the hand-crafted descriptors require strong prior knowledge, which may be ineffective in expressing its distinctiveness. In this paper, we present a novel compact multi-representation feature descriptor (CMrFD) with visual and semantic consistency, for finger-vein feature representation. Given the finger-vein images, we first form two-view representations to describe the informative vein features in local patches. Then, we jointly learn a feature transformation to map the two-view representations into discriminative binary codes. For the projection function, we linearly combine multi-view information and minimize the quantization error between the projected binary features and the original real-valued features. In terms of visual consistency, we minimize the Euclidean distance of each representation from the same class, at the same time, maximize the Euclidean distance from different classes in the projected space. Semantic consistency is used to ensure that similar images have compact multi-representation combined projection features. Lastly, we calculate the block-wise histograms as the final extracted features for finger-vein recognition. Experimental results on four widely used finger-vein databases demonstrate that the proposed method outperforms the state-of-the-art finger-vein recognition methods.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2022.3172218</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Binary codes ; Consistency ; Euclidean geometry ; Feature extraction ; Feature recognition ; feature transformation ; finger-vein recognition ; Histograms ; Learning systems ; Multi-representation ; Representations ; Semantics ; visual and semantic consistency ; Visualization</subject><ispartof>IEEE transactions on information forensics and security, 2022, Vol.17, p.1946-1958</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f404f551acf30d22ecaf568b5b1db1541ded0ab1f833c81c4e446eda7da9d1ae3</citedby><cites>FETCH-LOGICAL-c293t-f404f551acf30d22ecaf568b5b1db1541ded0ab1f833c81c4e446eda7da9d1ae3</cites><orcidid>0000-0001-5628-6237 ; 0000-0001-6876-8153 ; 0000-0001-6072-7875 ; 0000-0001-6264-9006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9772684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,4028,27932,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9772684$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Shuyi</creatorcontrib><creatorcontrib>Ma, Ruijun</creatorcontrib><creatorcontrib>Fei, Lunke</creatorcontrib><creatorcontrib>Zhang, Bob</creatorcontrib><title>Learning Compact Multirepresentation Feature Descriptor for Finger-Vein Recognition</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Due to its high anti-counterfeiting and universality, the use of finger-vein pattern for identity authentication has recently attracted extensive attention in academia and industry. Despite recent advances in finger-vein recognition, most of the hand-crafted descriptors require strong prior knowledge, which may be ineffective in expressing its distinctiveness. In this paper, we present a novel compact multi-representation feature descriptor (CMrFD) with visual and semantic consistency, for finger-vein feature representation. Given the finger-vein images, we first form two-view representations to describe the informative vein features in local patches. Then, we jointly learn a feature transformation to map the two-view representations into discriminative binary codes. For the projection function, we linearly combine multi-view information and minimize the quantization error between the projected binary features and the original real-valued features. In terms of visual consistency, we minimize the Euclidean distance of each representation from the same class, at the same time, maximize the Euclidean distance from different classes in the projected space. Semantic consistency is used to ensure that similar images have compact multi-representation combined projection features. Lastly, we calculate the block-wise histograms as the final extracted features for finger-vein recognition. Experimental results on four widely used finger-vein databases demonstrate that the proposed method outperforms the state-of-the-art finger-vein recognition methods.</description><subject>Binary codes</subject><subject>Consistency</subject><subject>Euclidean geometry</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>feature transformation</subject><subject>finger-vein recognition</subject><subject>Histograms</subject><subject>Learning systems</subject><subject>Multi-representation</subject><subject>Representations</subject><subject>Semantics</subject><subject>visual and semantic consistency</subject><subject>Visualization</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aycd-HKW6WqgItnoN2eykpLS7a5Ie_Pfu0tLD8M7heWfgIeQe6AyAlk_rRbWaMcrYjEPOGBQXZAJSZmlGGVyed-DX5CaELaVCQFZMyGqJ2reu3STzbt9rE5OPwy46j73HgG3U0XVtUqGOB4_JCwbjXR87n9hhqqGHPv1B1yZfaLpN60b8llxZvQt4d8op-a5e1_P3dPn5tpg_L1PDSh5TK6iwUoI2ltOGMTTayqyoZQ1NDVJAgw3VNdiCc1OAEShEho3OG102oJFPyePxbu-73wOGqLbdwbfDS8WynNGylAUbKDhSxncheLSq926v_Z8CqkZ3anSnRnfq5G7oPBw7DhHPfJnnLCsE_wf0lmxt</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Li, Shuyi</creator><creator>Ma, Ruijun</creator><creator>Fei, Lunke</creator><creator>Zhang, Bob</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5628-6237</orcidid><orcidid>https://orcid.org/0000-0001-6876-8153</orcidid><orcidid>https://orcid.org/0000-0001-6072-7875</orcidid><orcidid>https://orcid.org/0000-0001-6264-9006</orcidid></search><sort><creationdate>2022</creationdate><title>Learning Compact Multirepresentation Feature Descriptor for Finger-Vein Recognition</title><author>Li, Shuyi ; Ma, Ruijun ; Fei, Lunke ; Zhang, Bob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f404f551acf30d22ecaf568b5b1db1541ded0ab1f833c81c4e446eda7da9d1ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binary codes</topic><topic>Consistency</topic><topic>Euclidean geometry</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>feature transformation</topic><topic>finger-vein recognition</topic><topic>Histograms</topic><topic>Learning systems</topic><topic>Multi-representation</topic><topic>Representations</topic><topic>Semantics</topic><topic>visual and semantic consistency</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuyi</creatorcontrib><creatorcontrib>Ma, Ruijun</creatorcontrib><creatorcontrib>Fei, Lunke</creatorcontrib><creatorcontrib>Zhang, Bob</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Shuyi</au><au>Ma, Ruijun</au><au>Fei, Lunke</au><au>Zhang, Bob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Compact Multirepresentation Feature Descriptor for Finger-Vein Recognition</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2022</date><risdate>2022</risdate><volume>17</volume><spage>1946</spage><epage>1958</epage><pages>1946-1958</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Due to its high anti-counterfeiting and universality, the use of finger-vein pattern for identity authentication has recently attracted extensive attention in academia and industry. Despite recent advances in finger-vein recognition, most of the hand-crafted descriptors require strong prior knowledge, which may be ineffective in expressing its distinctiveness. In this paper, we present a novel compact multi-representation feature descriptor (CMrFD) with visual and semantic consistency, for finger-vein feature representation. Given the finger-vein images, we first form two-view representations to describe the informative vein features in local patches. Then, we jointly learn a feature transformation to map the two-view representations into discriminative binary codes. For the projection function, we linearly combine multi-view information and minimize the quantization error between the projected binary features and the original real-valued features. In terms of visual consistency, we minimize the Euclidean distance of each representation from the same class, at the same time, maximize the Euclidean distance from different classes in the projected space. Semantic consistency is used to ensure that similar images have compact multi-representation combined projection features. Lastly, we calculate the block-wise histograms as the final extracted features for finger-vein recognition. Experimental results on four widely used finger-vein databases demonstrate that the proposed method outperforms the state-of-the-art finger-vein recognition methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2022.3172218</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5628-6237</orcidid><orcidid>https://orcid.org/0000-0001-6876-8153</orcidid><orcidid>https://orcid.org/0000-0001-6072-7875</orcidid><orcidid>https://orcid.org/0000-0001-6264-9006</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2022, Vol.17, p.1946-1958 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIFS_2022_3172218 |
source | IEEE Electronic Library (IEL) |
subjects | Binary codes Consistency Euclidean geometry Feature extraction Feature recognition feature transformation finger-vein recognition Histograms Learning systems Multi-representation Representations Semantics visual and semantic consistency Visualization |
title | Learning Compact Multirepresentation Feature Descriptor for Finger-Vein Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T23%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Compact%20Multirepresentation%20Feature%20Descriptor%20for%20Finger-Vein%20Recognition&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Li,%20Shuyi&rft.date=2022&rft.volume=17&rft.spage=1946&rft.epage=1958&rft.pages=1946-1958&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2022.3172218&rft_dat=%3Cproquest_RIE%3E2672099582%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672099582&rft_id=info:pmid/&rft_ieee_id=9772684&rfr_iscdi=true |