Content-Aware Detection of Temporal Metadata Manipulation
Most pictures shared online are accompanied by temporal metadata (i.e., the day and time they were taken), which makes it possible to associate an image content with real-world events. Maliciously manipulating this metadata can convey a distorted version of reality. In this work, we present the emer...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2022-01, Vol.17, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on information forensics and security |
container_volume | 17 |
creator | Padilha, Rafael Salem, Tawfiq Workman, Scott Andalo, Fernanda A. Rocha, Anderson Jacobs, Nathan |
description | Most pictures shared online are accompanied by temporal metadata (i.e., the day and time they were taken), which makes it possible to associate an image content with real-world events. Maliciously manipulating this metadata can convey a distorted version of reality. In this work, we present the emerging problem of detecting timestamp manipulation. We propose an end-to-end approach to verify whether the purported time of capture of an outdoor image is consistent with its content and geographic location. We consider manipulations done in the hour and/or month of capture of a photograph. The central idea is the use of supervised consistency verification, in which we predict the probability that the image content, capture time, and geographical location are consistent. We also include a pair of auxiliary tasks, which can be used to explain the network decision. Our approach improves upon previous work on a large benchmark dataset, increasing the classification accuracy from 59.0% to 81.1%. We perform an ablation study that highlights the importance of various components of the method, showing what types of tampering are detectable using our approach. Finally, we demonstrate how the proposed method can be employed to estimate a possible time-of-capture in scenarios in which the timestamp is missing from the metadata. |
doi_str_mv | 10.1109/TIFS.2022.3159154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIFS_2022_3159154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9733363</ieee_id><sourcerecordid>2643018744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e4e9d18b1f6e671c57e68228e0dca933d51aa07509d410ac5e2a72b20ff9bc963</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2a9kj6VaLbR4sJ6XaTKBlDYbNxvEf29CS08zh-d9Z3gYewQ-A-D2Zbtafs0EF2ImQVvQ6opNQGuTGi7g-rKDvGV3XbfnXCkw-YTZhW8iNTGd_2Kg5JUiFbH2TeKrZEvH1gc8JBuKWGLEZINN3fYHHIl7dlPhoaOH85yy7-XbdvGRrj_fV4v5Oi2kNDElRbaEfAeVIZNBoTMyuRA58bJAK2WpAZFnmttSAcdCk8BM7ASvKrsrrJFT9nzqbYP_6amLbu_70AwnnTBKcsgzpQYKTlQRfNcFqlwb6iOGPwfcjYbcaMiNhtzZ0JB5OmVqIrrwNpPD41L-A0FkYQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643018744</pqid></control><display><type>article</type><title>Content-Aware Detection of Temporal Metadata Manipulation</title><source>IEEE Electronic Library (IEL)</source><creator>Padilha, Rafael ; Salem, Tawfiq ; Workman, Scott ; Andalo, Fernanda A. ; Rocha, Anderson ; Jacobs, Nathan</creator><creatorcontrib>Padilha, Rafael ; Salem, Tawfiq ; Workman, Scott ; Andalo, Fernanda A. ; Rocha, Anderson ; Jacobs, Nathan</creatorcontrib><description>Most pictures shared online are accompanied by temporal metadata (i.e., the day and time they were taken), which makes it possible to associate an image content with real-world events. Maliciously manipulating this metadata can convey a distorted version of reality. In this work, we present the emerging problem of detecting timestamp manipulation. We propose an end-to-end approach to verify whether the purported time of capture of an outdoor image is consistent with its content and geographic location. We consider manipulations done in the hour and/or month of capture of a photograph. The central idea is the use of supervised consistency verification, in which we predict the probability that the image content, capture time, and geographical location are consistent. We also include a pair of auxiliary tasks, which can be used to explain the network decision. Our approach improves upon previous work on a large benchmark dataset, increasing the classification accuracy from 59.0% to 81.1%. We perform an ablation study that highlights the importance of various components of the method, showing what types of tampering are detectable using our approach. Finally, we demonstrate how the proposed method can be employed to estimate a possible time-of-capture in scenarios in which the timestamp is missing from the metadata.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2022.3159154</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablation ; digital forensics ; Geographical locations ; Image manipulation ; Metadata ; metadata manipulation detection ; Meteorology ; Satellites ; Sun ; Task analysis ; temporal metadata manipulation ; Timestamp verification ; Transient analysis ; Visualization</subject><ispartof>IEEE transactions on information forensics and security, 2022-01, Vol.17, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e4e9d18b1f6e671c57e68228e0dca933d51aa07509d410ac5e2a72b20ff9bc963</citedby><cites>FETCH-LOGICAL-c336t-e4e9d18b1f6e671c57e68228e0dca933d51aa07509d410ac5e2a72b20ff9bc963</cites><orcidid>0000-0002-7145-7484 ; 0000-0002-4236-8212 ; 0000-0003-1944-5475 ; 0000-0002-5243-0921 ; 0000-0001-6232-0542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9733363$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9733363$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Padilha, Rafael</creatorcontrib><creatorcontrib>Salem, Tawfiq</creatorcontrib><creatorcontrib>Workman, Scott</creatorcontrib><creatorcontrib>Andalo, Fernanda A.</creatorcontrib><creatorcontrib>Rocha, Anderson</creatorcontrib><creatorcontrib>Jacobs, Nathan</creatorcontrib><title>Content-Aware Detection of Temporal Metadata Manipulation</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Most pictures shared online are accompanied by temporal metadata (i.e., the day and time they were taken), which makes it possible to associate an image content with real-world events. Maliciously manipulating this metadata can convey a distorted version of reality. In this work, we present the emerging problem of detecting timestamp manipulation. We propose an end-to-end approach to verify whether the purported time of capture of an outdoor image is consistent with its content and geographic location. We consider manipulations done in the hour and/or month of capture of a photograph. The central idea is the use of supervised consistency verification, in which we predict the probability that the image content, capture time, and geographical location are consistent. We also include a pair of auxiliary tasks, which can be used to explain the network decision. Our approach improves upon previous work on a large benchmark dataset, increasing the classification accuracy from 59.0% to 81.1%. We perform an ablation study that highlights the importance of various components of the method, showing what types of tampering are detectable using our approach. Finally, we demonstrate how the proposed method can be employed to estimate a possible time-of-capture in scenarios in which the timestamp is missing from the metadata.</description><subject>Ablation</subject><subject>digital forensics</subject><subject>Geographical locations</subject><subject>Image manipulation</subject><subject>Metadata</subject><subject>metadata manipulation detection</subject><subject>Meteorology</subject><subject>Satellites</subject><subject>Sun</subject><subject>Task analysis</subject><subject>temporal metadata manipulation</subject><subject>Timestamp verification</subject><subject>Transient analysis</subject><subject>Visualization</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2a9kj6VaLbR4sJ6XaTKBlDYbNxvEf29CS08zh-d9Z3gYewQ-A-D2Zbtafs0EF2ImQVvQ6opNQGuTGi7g-rKDvGV3XbfnXCkw-YTZhW8iNTGd_2Kg5JUiFbH2TeKrZEvH1gc8JBuKWGLEZINN3fYHHIl7dlPhoaOH85yy7-XbdvGRrj_fV4v5Oi2kNDElRbaEfAeVIZNBoTMyuRA58bJAK2WpAZFnmttSAcdCk8BM7ASvKrsrrJFT9nzqbYP_6amLbu_70AwnnTBKcsgzpQYKTlQRfNcFqlwb6iOGPwfcjYbcaMiNhtzZ0JB5OmVqIrrwNpPD41L-A0FkYQA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Padilha, Rafael</creator><creator>Salem, Tawfiq</creator><creator>Workman, Scott</creator><creator>Andalo, Fernanda A.</creator><creator>Rocha, Anderson</creator><creator>Jacobs, Nathan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7145-7484</orcidid><orcidid>https://orcid.org/0000-0002-4236-8212</orcidid><orcidid>https://orcid.org/0000-0003-1944-5475</orcidid><orcidid>https://orcid.org/0000-0002-5243-0921</orcidid><orcidid>https://orcid.org/0000-0001-6232-0542</orcidid></search><sort><creationdate>20220101</creationdate><title>Content-Aware Detection of Temporal Metadata Manipulation</title><author>Padilha, Rafael ; Salem, Tawfiq ; Workman, Scott ; Andalo, Fernanda A. ; Rocha, Anderson ; Jacobs, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e4e9d18b1f6e671c57e68228e0dca933d51aa07509d410ac5e2a72b20ff9bc963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>digital forensics</topic><topic>Geographical locations</topic><topic>Image manipulation</topic><topic>Metadata</topic><topic>metadata manipulation detection</topic><topic>Meteorology</topic><topic>Satellites</topic><topic>Sun</topic><topic>Task analysis</topic><topic>temporal metadata manipulation</topic><topic>Timestamp verification</topic><topic>Transient analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padilha, Rafael</creatorcontrib><creatorcontrib>Salem, Tawfiq</creatorcontrib><creatorcontrib>Workman, Scott</creatorcontrib><creatorcontrib>Andalo, Fernanda A.</creatorcontrib><creatorcontrib>Rocha, Anderson</creatorcontrib><creatorcontrib>Jacobs, Nathan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Padilha, Rafael</au><au>Salem, Tawfiq</au><au>Workman, Scott</au><au>Andalo, Fernanda A.</au><au>Rocha, Anderson</au><au>Jacobs, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Content-Aware Detection of Temporal Metadata Manipulation</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>17</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Most pictures shared online are accompanied by temporal metadata (i.e., the day and time they were taken), which makes it possible to associate an image content with real-world events. Maliciously manipulating this metadata can convey a distorted version of reality. In this work, we present the emerging problem of detecting timestamp manipulation. We propose an end-to-end approach to verify whether the purported time of capture of an outdoor image is consistent with its content and geographic location. We consider manipulations done in the hour and/or month of capture of a photograph. The central idea is the use of supervised consistency verification, in which we predict the probability that the image content, capture time, and geographical location are consistent. We also include a pair of auxiliary tasks, which can be used to explain the network decision. Our approach improves upon previous work on a large benchmark dataset, increasing the classification accuracy from 59.0% to 81.1%. We perform an ablation study that highlights the importance of various components of the method, showing what types of tampering are detectable using our approach. Finally, we demonstrate how the proposed method can be employed to estimate a possible time-of-capture in scenarios in which the timestamp is missing from the metadata.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2022.3159154</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7145-7484</orcidid><orcidid>https://orcid.org/0000-0002-4236-8212</orcidid><orcidid>https://orcid.org/0000-0003-1944-5475</orcidid><orcidid>https://orcid.org/0000-0002-5243-0921</orcidid><orcidid>https://orcid.org/0000-0001-6232-0542</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2022-01, Vol.17, p.1-1 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIFS_2022_3159154 |
source | IEEE Electronic Library (IEL) |
subjects | Ablation digital forensics Geographical locations Image manipulation Metadata metadata manipulation detection Meteorology Satellites Sun Task analysis temporal metadata manipulation Timestamp verification Transient analysis Visualization |
title | Content-Aware Detection of Temporal Metadata Manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Content-Aware%20Detection%20of%20Temporal%20Metadata%20Manipulation&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Padilha,%20Rafael&rft.date=2022-01-01&rft.volume=17&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2022.3159154&rft_dat=%3Cproquest_RIE%3E2643018744%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643018744&rft_id=info:pmid/&rft_ieee_id=9733363&rfr_iscdi=true |