Multi-Scale Deep Representation Aggregation for Vein Recognition
The recent success of Deep Convolutional Neural Network (DCNN) for various computer vision tasks such as image recognition has already demonstrated its robust feature representation ability. However, the limitation of training database on small scale vein recognition tasks restricts its performance...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2021, Vol.16, p.1-15 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on information forensics and security |
container_volume | 16 |
creator | Pan, Zaiyu Wang, Jun Wang, Guoqing Zhu, Jihong |
description | The recent success of Deep Convolutional Neural Network (DCNN) for various computer vision tasks such as image recognition has already demonstrated its robust feature representation ability. However, the limitation of training database on small scale vein recognition tasks restricts its performance because the recognition result of DCNN depends heavily on the number of trainsets. This motivates the design of a Multi-Scale Deep Representation Aggregation (MSDRA) model based on a pre-trained DCNN for vein recognition. First, the multi-scale feature maps are extracted by a pre-trained DCNN model. Second, a local mean threshold approach is designed to preliminarily remove the noisy information of multi-scale feature maps and generate the selected feature maps. Third, we propose an Unsupervised Vein Information Mining (UVIM) method to localize vein information of selected feature maps for generating a binary vein information mask, and then the vein information mask is utilized to keep useful deep representation and discard the background information. Finally, the discriminative multi-scale deep representations, which are generated by using the vein information mask to aggregate multi-scale feature maps, are concatenated into the final compact feature vectors, and then a Support Vector Machine (SVM) is introduced for final recognition. Our proposed model outperforms the state-of-the-art methods on two benchmark vein databases. Moreover, an additional experiment using the subset of PolyU Palmprint database illustrates the system's generalization ability and robustness. |
doi_str_mv | 10.1109/TIFS.2020.2994738 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIFS_2020_2994738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9093909</ieee_id><sourcerecordid>2429297932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-be527c49895984832f716ad98c83b348a9cd6b9992e430e2d6a5b5676f2a86d53</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dr2x2bpbaaqEi2Op12WwmIaUmcTc9-O9NSOlhmGF43hl4CLlndMYYhafderWdccrpjAPIVOgLMmFJomJFObs8z0xck5sQ9pRKyZSekOf346Gr4q2zB4xeENvoE1uPAevOdlVTR_Oy9FiOc9H46BurumdcU9bVsLwlV4U9BLw79Sn5Wi13i7d48_G6Xsw3seMgujjDhKdOgoYEtNSCFylTNgfttMiE1BZcrjIA4CgFRZ4rm2SJSlXBrVZ5Iqbkcbzb-ub3iKEz--bo6_6l4ZIDhxQE7yk2Us43IXgsTOurH-v_DKNmEGUGUWYQZU6i-szDmKkQ8cwDBTHUPxu2Ywk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429297932</pqid></control><display><type>article</type><title>Multi-Scale Deep Representation Aggregation for Vein Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Pan, Zaiyu ; Wang, Jun ; Wang, Guoqing ; Zhu, Jihong</creator><creatorcontrib>Pan, Zaiyu ; Wang, Jun ; Wang, Guoqing ; Zhu, Jihong</creatorcontrib><description>The recent success of Deep Convolutional Neural Network (DCNN) for various computer vision tasks such as image recognition has already demonstrated its robust feature representation ability. However, the limitation of training database on small scale vein recognition tasks restricts its performance because the recognition result of DCNN depends heavily on the number of trainsets. This motivates the design of a Multi-Scale Deep Representation Aggregation (MSDRA) model based on a pre-trained DCNN for vein recognition. First, the multi-scale feature maps are extracted by a pre-trained DCNN model. Second, a local mean threshold approach is designed to preliminarily remove the noisy information of multi-scale feature maps and generate the selected feature maps. Third, we propose an Unsupervised Vein Information Mining (UVIM) method to localize vein information of selected feature maps for generating a binary vein information mask, and then the vein information mask is utilized to keep useful deep representation and discard the background information. Finally, the discriminative multi-scale deep representations, which are generated by using the vein information mask to aggregate multi-scale feature maps, are concatenated into the final compact feature vectors, and then a Support Vector Machine (SVM) is introduced for final recognition. Our proposed model outperforms the state-of-the-art methods on two benchmark vein databases. Moreover, an additional experiment using the subset of PolyU Palmprint database illustrates the system's generalization ability and robustness.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2020.2994738</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agglomeration ; Artificial neural networks ; Computer vision ; Feature extraction ; Feature maps ; Image recognition ; local mean threshold ; multi-scale deep representation aggregation (MSDRA) ; Object recognition ; Pre-trained DCNN ; Representations ; Shape ; Support vector machines ; Task analysis ; Training ; unsupervised vein information mining (UVIM) ; vein recognition ; Veins</subject><ispartof>IEEE transactions on information forensics and security, 2021, Vol.16, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-be527c49895984832f716ad98c83b348a9cd6b9992e430e2d6a5b5676f2a86d53</citedby><cites>FETCH-LOGICAL-c293t-be527c49895984832f716ad98c83b348a9cd6b9992e430e2d6a5b5676f2a86d53</cites><orcidid>0000-0003-2946-6296 ; 0000-0002-3938-5994 ; 0000-0002-3676-1958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9093909$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9093909$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pan, Zaiyu</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Zhu, Jihong</creatorcontrib><title>Multi-Scale Deep Representation Aggregation for Vein Recognition</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>The recent success of Deep Convolutional Neural Network (DCNN) for various computer vision tasks such as image recognition has already demonstrated its robust feature representation ability. However, the limitation of training database on small scale vein recognition tasks restricts its performance because the recognition result of DCNN depends heavily on the number of trainsets. This motivates the design of a Multi-Scale Deep Representation Aggregation (MSDRA) model based on a pre-trained DCNN for vein recognition. First, the multi-scale feature maps are extracted by a pre-trained DCNN model. Second, a local mean threshold approach is designed to preliminarily remove the noisy information of multi-scale feature maps and generate the selected feature maps. Third, we propose an Unsupervised Vein Information Mining (UVIM) method to localize vein information of selected feature maps for generating a binary vein information mask, and then the vein information mask is utilized to keep useful deep representation and discard the background information. Finally, the discriminative multi-scale deep representations, which are generated by using the vein information mask to aggregate multi-scale feature maps, are concatenated into the final compact feature vectors, and then a Support Vector Machine (SVM) is introduced for final recognition. Our proposed model outperforms the state-of-the-art methods on two benchmark vein databases. Moreover, an additional experiment using the subset of PolyU Palmprint database illustrates the system's generalization ability and robustness.</description><subject>Agglomeration</subject><subject>Artificial neural networks</subject><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Image recognition</subject><subject>local mean threshold</subject><subject>multi-scale deep representation aggregation (MSDRA)</subject><subject>Object recognition</subject><subject>Pre-trained DCNN</subject><subject>Representations</subject><subject>Shape</subject><subject>Support vector machines</subject><subject>Task analysis</subject><subject>Training</subject><subject>unsupervised vein information mining (UVIM)</subject><subject>vein recognition</subject><subject>Veins</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dr2x2bpbaaqEi2Op12WwmIaUmcTc9-O9NSOlhmGF43hl4CLlndMYYhafderWdccrpjAPIVOgLMmFJomJFObs8z0xck5sQ9pRKyZSekOf346Gr4q2zB4xeENvoE1uPAevOdlVTR_Oy9FiOc9H46BurumdcU9bVsLwlV4U9BLw79Sn5Wi13i7d48_G6Xsw3seMgujjDhKdOgoYEtNSCFylTNgfttMiE1BZcrjIA4CgFRZ4rm2SJSlXBrVZ5Iqbkcbzb-ub3iKEz--bo6_6l4ZIDhxQE7yk2Us43IXgsTOurH-v_DKNmEGUGUWYQZU6i-szDmKkQ8cwDBTHUPxu2Ywk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Pan, Zaiyu</creator><creator>Wang, Jun</creator><creator>Wang, Guoqing</creator><creator>Zhu, Jihong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2946-6296</orcidid><orcidid>https://orcid.org/0000-0002-3938-5994</orcidid><orcidid>https://orcid.org/0000-0002-3676-1958</orcidid></search><sort><creationdate>2021</creationdate><title>Multi-Scale Deep Representation Aggregation for Vein Recognition</title><author>Pan, Zaiyu ; Wang, Jun ; Wang, Guoqing ; Zhu, Jihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-be527c49895984832f716ad98c83b348a9cd6b9992e430e2d6a5b5676f2a86d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomeration</topic><topic>Artificial neural networks</topic><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Image recognition</topic><topic>local mean threshold</topic><topic>multi-scale deep representation aggregation (MSDRA)</topic><topic>Object recognition</topic><topic>Pre-trained DCNN</topic><topic>Representations</topic><topic>Shape</topic><topic>Support vector machines</topic><topic>Task analysis</topic><topic>Training</topic><topic>unsupervised vein information mining (UVIM)</topic><topic>vein recognition</topic><topic>Veins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Zaiyu</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Zhu, Jihong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Zaiyu</au><au>Wang, Jun</au><au>Wang, Guoqing</au><au>Zhu, Jihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Scale Deep Representation Aggregation for Vein Recognition</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2021</date><risdate>2021</risdate><volume>16</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>The recent success of Deep Convolutional Neural Network (DCNN) for various computer vision tasks such as image recognition has already demonstrated its robust feature representation ability. However, the limitation of training database on small scale vein recognition tasks restricts its performance because the recognition result of DCNN depends heavily on the number of trainsets. This motivates the design of a Multi-Scale Deep Representation Aggregation (MSDRA) model based on a pre-trained DCNN for vein recognition. First, the multi-scale feature maps are extracted by a pre-trained DCNN model. Second, a local mean threshold approach is designed to preliminarily remove the noisy information of multi-scale feature maps and generate the selected feature maps. Third, we propose an Unsupervised Vein Information Mining (UVIM) method to localize vein information of selected feature maps for generating a binary vein information mask, and then the vein information mask is utilized to keep useful deep representation and discard the background information. Finally, the discriminative multi-scale deep representations, which are generated by using the vein information mask to aggregate multi-scale feature maps, are concatenated into the final compact feature vectors, and then a Support Vector Machine (SVM) is introduced for final recognition. Our proposed model outperforms the state-of-the-art methods on two benchmark vein databases. Moreover, an additional experiment using the subset of PolyU Palmprint database illustrates the system's generalization ability and robustness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2020.2994738</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2946-6296</orcidid><orcidid>https://orcid.org/0000-0002-3938-5994</orcidid><orcidid>https://orcid.org/0000-0002-3676-1958</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2021, Vol.16, p.1-15 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIFS_2020_2994738 |
source | IEEE Electronic Library (IEL) |
subjects | Agglomeration Artificial neural networks Computer vision Feature extraction Feature maps Image recognition local mean threshold multi-scale deep representation aggregation (MSDRA) Object recognition Pre-trained DCNN Representations Shape Support vector machines Task analysis Training unsupervised vein information mining (UVIM) vein recognition Veins |
title | Multi-Scale Deep Representation Aggregation for Vein Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Scale%20Deep%20Representation%20Aggregation%20for%20Vein%20Recognition&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Pan,%20Zaiyu&rft.date=2021&rft.volume=16&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2020.2994738&rft_dat=%3Cproquest_RIE%3E2429297932%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429297932&rft_id=info:pmid/&rft_ieee_id=9093909&rfr_iscdi=true |