Multi-Scale Deep Representation Aggregation for Vein Recognition

The recent success of Deep Convolutional Neural Network (DCNN) for various computer vision tasks such as image recognition has already demonstrated its robust feature representation ability. However, the limitation of training database on small scale vein recognition tasks restricts its performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2021, Vol.16, p.1-15
Hauptverfasser: Pan, Zaiyu, Wang, Jun, Wang, Guoqing, Zhu, Jihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on information forensics and security
container_volume 16
creator Pan, Zaiyu
Wang, Jun
Wang, Guoqing
Zhu, Jihong
description The recent success of Deep Convolutional Neural Network (DCNN) for various computer vision tasks such as image recognition has already demonstrated its robust feature representation ability. However, the limitation of training database on small scale vein recognition tasks restricts its performance because the recognition result of DCNN depends heavily on the number of trainsets. This motivates the design of a Multi-Scale Deep Representation Aggregation (MSDRA) model based on a pre-trained DCNN for vein recognition. First, the multi-scale feature maps are extracted by a pre-trained DCNN model. Second, a local mean threshold approach is designed to preliminarily remove the noisy information of multi-scale feature maps and generate the selected feature maps. Third, we propose an Unsupervised Vein Information Mining (UVIM) method to localize vein information of selected feature maps for generating a binary vein information mask, and then the vein information mask is utilized to keep useful deep representation and discard the background information. Finally, the discriminative multi-scale deep representations, which are generated by using the vein information mask to aggregate multi-scale feature maps, are concatenated into the final compact feature vectors, and then a Support Vector Machine (SVM) is introduced for final recognition. Our proposed model outperforms the state-of-the-art methods on two benchmark vein databases. Moreover, an additional experiment using the subset of PolyU Palmprint database illustrates the system's generalization ability and robustness.
doi_str_mv 10.1109/TIFS.2020.2994738
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIFS_2020_2994738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9093909</ieee_id><sourcerecordid>2429297932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-be527c49895984832f716ad98c83b348a9cd6b9992e430e2d6a5b5676f2a86d53</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dr2x2bpbaaqEi2Op12WwmIaUmcTc9-O9NSOlhmGF43hl4CLlndMYYhafderWdccrpjAPIVOgLMmFJomJFObs8z0xck5sQ9pRKyZSekOf346Gr4q2zB4xeENvoE1uPAevOdlVTR_Oy9FiOc9H46BurumdcU9bVsLwlV4U9BLw79Sn5Wi13i7d48_G6Xsw3seMgujjDhKdOgoYEtNSCFylTNgfttMiE1BZcrjIA4CgFRZ4rm2SJSlXBrVZ5Iqbkcbzb-ub3iKEz--bo6_6l4ZIDhxQE7yk2Us43IXgsTOurH-v_DKNmEGUGUWYQZU6i-szDmKkQ8cwDBTHUPxu2Ywk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429297932</pqid></control><display><type>article</type><title>Multi-Scale Deep Representation Aggregation for Vein Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Pan, Zaiyu ; Wang, Jun ; Wang, Guoqing ; Zhu, Jihong</creator><creatorcontrib>Pan, Zaiyu ; Wang, Jun ; Wang, Guoqing ; Zhu, Jihong</creatorcontrib><description>The recent success of Deep Convolutional Neural Network (DCNN) for various computer vision tasks such as image recognition has already demonstrated its robust feature representation ability. However, the limitation of training database on small scale vein recognition tasks restricts its performance because the recognition result of DCNN depends heavily on the number of trainsets. This motivates the design of a Multi-Scale Deep Representation Aggregation (MSDRA) model based on a pre-trained DCNN for vein recognition. First, the multi-scale feature maps are extracted by a pre-trained DCNN model. Second, a local mean threshold approach is designed to preliminarily remove the noisy information of multi-scale feature maps and generate the selected feature maps. Third, we propose an Unsupervised Vein Information Mining (UVIM) method to localize vein information of selected feature maps for generating a binary vein information mask, and then the vein information mask is utilized to keep useful deep representation and discard the background information. Finally, the discriminative multi-scale deep representations, which are generated by using the vein information mask to aggregate multi-scale feature maps, are concatenated into the final compact feature vectors, and then a Support Vector Machine (SVM) is introduced for final recognition. Our proposed model outperforms the state-of-the-art methods on two benchmark vein databases. Moreover, an additional experiment using the subset of PolyU Palmprint database illustrates the system's generalization ability and robustness.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2020.2994738</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agglomeration ; Artificial neural networks ; Computer vision ; Feature extraction ; Feature maps ; Image recognition ; local mean threshold ; multi-scale deep representation aggregation (MSDRA) ; Object recognition ; Pre-trained DCNN ; Representations ; Shape ; Support vector machines ; Task analysis ; Training ; unsupervised vein information mining (UVIM) ; vein recognition ; Veins</subject><ispartof>IEEE transactions on information forensics and security, 2021, Vol.16, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-be527c49895984832f716ad98c83b348a9cd6b9992e430e2d6a5b5676f2a86d53</citedby><cites>FETCH-LOGICAL-c293t-be527c49895984832f716ad98c83b348a9cd6b9992e430e2d6a5b5676f2a86d53</cites><orcidid>0000-0003-2946-6296 ; 0000-0002-3938-5994 ; 0000-0002-3676-1958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9093909$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9093909$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pan, Zaiyu</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Zhu, Jihong</creatorcontrib><title>Multi-Scale Deep Representation Aggregation for Vein Recognition</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>The recent success of Deep Convolutional Neural Network (DCNN) for various computer vision tasks such as image recognition has already demonstrated its robust feature representation ability. However, the limitation of training database on small scale vein recognition tasks restricts its performance because the recognition result of DCNN depends heavily on the number of trainsets. This motivates the design of a Multi-Scale Deep Representation Aggregation (MSDRA) model based on a pre-trained DCNN for vein recognition. First, the multi-scale feature maps are extracted by a pre-trained DCNN model. Second, a local mean threshold approach is designed to preliminarily remove the noisy information of multi-scale feature maps and generate the selected feature maps. Third, we propose an Unsupervised Vein Information Mining (UVIM) method to localize vein information of selected feature maps for generating a binary vein information mask, and then the vein information mask is utilized to keep useful deep representation and discard the background information. Finally, the discriminative multi-scale deep representations, which are generated by using the vein information mask to aggregate multi-scale feature maps, are concatenated into the final compact feature vectors, and then a Support Vector Machine (SVM) is introduced for final recognition. Our proposed model outperforms the state-of-the-art methods on two benchmark vein databases. Moreover, an additional experiment using the subset of PolyU Palmprint database illustrates the system's generalization ability and robustness.</description><subject>Agglomeration</subject><subject>Artificial neural networks</subject><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Image recognition</subject><subject>local mean threshold</subject><subject>multi-scale deep representation aggregation (MSDRA)</subject><subject>Object recognition</subject><subject>Pre-trained DCNN</subject><subject>Representations</subject><subject>Shape</subject><subject>Support vector machines</subject><subject>Task analysis</subject><subject>Training</subject><subject>unsupervised vein information mining (UVIM)</subject><subject>vein recognition</subject><subject>Veins</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dr2x2bpbaaqEi2Op12WwmIaUmcTc9-O9NSOlhmGF43hl4CLlndMYYhafderWdccrpjAPIVOgLMmFJomJFObs8z0xck5sQ9pRKyZSekOf346Gr4q2zB4xeENvoE1uPAevOdlVTR_Oy9FiOc9H46BurumdcU9bVsLwlV4U9BLw79Sn5Wi13i7d48_G6Xsw3seMgujjDhKdOgoYEtNSCFylTNgfttMiE1BZcrjIA4CgFRZ4rm2SJSlXBrVZ5Iqbkcbzb-ub3iKEz--bo6_6l4ZIDhxQE7yk2Us43IXgsTOurH-v_DKNmEGUGUWYQZU6i-szDmKkQ8cwDBTHUPxu2Ywk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Pan, Zaiyu</creator><creator>Wang, Jun</creator><creator>Wang, Guoqing</creator><creator>Zhu, Jihong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2946-6296</orcidid><orcidid>https://orcid.org/0000-0002-3938-5994</orcidid><orcidid>https://orcid.org/0000-0002-3676-1958</orcidid></search><sort><creationdate>2021</creationdate><title>Multi-Scale Deep Representation Aggregation for Vein Recognition</title><author>Pan, Zaiyu ; Wang, Jun ; Wang, Guoqing ; Zhu, Jihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-be527c49895984832f716ad98c83b348a9cd6b9992e430e2d6a5b5676f2a86d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomeration</topic><topic>Artificial neural networks</topic><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Image recognition</topic><topic>local mean threshold</topic><topic>multi-scale deep representation aggregation (MSDRA)</topic><topic>Object recognition</topic><topic>Pre-trained DCNN</topic><topic>Representations</topic><topic>Shape</topic><topic>Support vector machines</topic><topic>Task analysis</topic><topic>Training</topic><topic>unsupervised vein information mining (UVIM)</topic><topic>vein recognition</topic><topic>Veins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Zaiyu</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Zhu, Jihong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Zaiyu</au><au>Wang, Jun</au><au>Wang, Guoqing</au><au>Zhu, Jihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Scale Deep Representation Aggregation for Vein Recognition</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2021</date><risdate>2021</risdate><volume>16</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>The recent success of Deep Convolutional Neural Network (DCNN) for various computer vision tasks such as image recognition has already demonstrated its robust feature representation ability. However, the limitation of training database on small scale vein recognition tasks restricts its performance because the recognition result of DCNN depends heavily on the number of trainsets. This motivates the design of a Multi-Scale Deep Representation Aggregation (MSDRA) model based on a pre-trained DCNN for vein recognition. First, the multi-scale feature maps are extracted by a pre-trained DCNN model. Second, a local mean threshold approach is designed to preliminarily remove the noisy information of multi-scale feature maps and generate the selected feature maps. Third, we propose an Unsupervised Vein Information Mining (UVIM) method to localize vein information of selected feature maps for generating a binary vein information mask, and then the vein information mask is utilized to keep useful deep representation and discard the background information. Finally, the discriminative multi-scale deep representations, which are generated by using the vein information mask to aggregate multi-scale feature maps, are concatenated into the final compact feature vectors, and then a Support Vector Machine (SVM) is introduced for final recognition. Our proposed model outperforms the state-of-the-art methods on two benchmark vein databases. Moreover, an additional experiment using the subset of PolyU Palmprint database illustrates the system's generalization ability and robustness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2020.2994738</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2946-6296</orcidid><orcidid>https://orcid.org/0000-0002-3938-5994</orcidid><orcidid>https://orcid.org/0000-0002-3676-1958</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2021, Vol.16, p.1-15
issn 1556-6013
1556-6021
language eng
recordid cdi_crossref_primary_10_1109_TIFS_2020_2994738
source IEEE Electronic Library (IEL)
subjects Agglomeration
Artificial neural networks
Computer vision
Feature extraction
Feature maps
Image recognition
local mean threshold
multi-scale deep representation aggregation (MSDRA)
Object recognition
Pre-trained DCNN
Representations
Shape
Support vector machines
Task analysis
Training
unsupervised vein information mining (UVIM)
vein recognition
Veins
title Multi-Scale Deep Representation Aggregation for Vein Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Scale%20Deep%20Representation%20Aggregation%20for%20Vein%20Recognition&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Pan,%20Zaiyu&rft.date=2021&rft.volume=16&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2020.2994738&rft_dat=%3Cproquest_RIE%3E2429297932%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429297932&rft_id=info:pmid/&rft_ieee_id=9093909&rfr_iscdi=true