Toward Pose-Invariant 2-D Face Recognition Through Point Distribution Models and Facial Symmetry

This paper proposes novel ways to deal with pose variations in a 2-D face recognition scenario. Using a training set of sparse face meshes, we built a point distribution model and identified the parameters which are responsible for controlling the apparent changes in shape due to turning and nodding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2007-09, Vol.2 (3), p.413-429
Hauptverfasser: Gonzalez-Jimenez, D., Alba-Castro, J.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 429
container_issue 3
container_start_page 413
container_title IEEE transactions on information forensics and security
container_volume 2
creator Gonzalez-Jimenez, D.
Alba-Castro, J.L.
description This paper proposes novel ways to deal with pose variations in a 2-D face recognition scenario. Using a training set of sparse face meshes, we built a point distribution model and identified the parameters which are responsible for controlling the apparent changes in shape due to turning and nodding the head, namely the pose parameters. Based on them, we propose two approaches for pose correction: 1) a method in which the pose parameters from both meshes are set to typical values of frontal faces, and 2) a method in which one mesh adopts the pose parameters of the other one. Finally, we obtain pose corrected meshes and, taking advantage of facial symmetry, virtual views are synthesized via Thin Plate Splines-based warping. Given that the corrected images are not embedded into a constant reference frame, holistic methods are not suitable for feature extraction. Instead, the virtual faces are fed into a system that makes use of Gabor filtering for recognition. Unlike other approaches that warp faces onto a mean shape, we show that if only pose parameters are modified, client specific information remains in the warped image and discrimination between subjects is more reliable. Statistical analysis of the authentication results obtained on the XM2VTS database confirm the hypothesis. Also, the CMU PIE database is used to assess the performance of the proposed methods in an identification scenario where large pose variations are present, achieving state-of-the-art results and outperforming both research and commercial techniques.
doi_str_mv 10.1109/TIFS.2007.903543
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIFS_2007_903543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4291544</ieee_id><sourcerecordid>2332331741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-71664f7d39a9a1c645cd7d77c26417273184356bd4d7272c1fb6d349ae230ee63</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhiMEEqWwI7FETCwpPn8mI2opVAKBaJmNa7utqzQudgLqvyehqAPT3eme93R6kuQS0AAAFbezyXg6wAiJQYEIo-Qo6QFjPOMIw_GhB3KanMW4RohS4Hkv-Zj5bxVM-uqjzSbVlwpOVXWKs1E6Vtqmb1b7ZeVq56t0tgq-Wa5a1rXIyMU6uHnzu3r2xpYxVZXpYk6V6XS32dg67M6Tk4Uqo734q_3kfXw_Gz5mTy8Pk-HdU6YJJnUmgHO6EIYUqlCgOWXaCCOExpyCwIJATgnjc0NNO2ENizk3hBbKYoKs5aSf3OzvboP_bGys5cZFbctSVdY3UQIXQIDhgrXo9T907ZtQtd_JnJOc5TTPWwjtIR18jMEu5Da4jQo7CUh2xmVnXHbG5d54G7naR5y19oBTXACjlPwAqW97FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863858488</pqid></control><display><type>article</type><title>Toward Pose-Invariant 2-D Face Recognition Through Point Distribution Models and Facial Symmetry</title><source>IEEE Electronic Library (IEL)</source><creator>Gonzalez-Jimenez, D. ; Alba-Castro, J.L.</creator><creatorcontrib>Gonzalez-Jimenez, D. ; Alba-Castro, J.L.</creatorcontrib><description>This paper proposes novel ways to deal with pose variations in a 2-D face recognition scenario. Using a training set of sparse face meshes, we built a point distribution model and identified the parameters which are responsible for controlling the apparent changes in shape due to turning and nodding the head, namely the pose parameters. Based on them, we propose two approaches for pose correction: 1) a method in which the pose parameters from both meshes are set to typical values of frontal faces, and 2) a method in which one mesh adopts the pose parameters of the other one. Finally, we obtain pose corrected meshes and, taking advantage of facial symmetry, virtual views are synthesized via Thin Plate Splines-based warping. Given that the corrected images are not embedded into a constant reference frame, holistic methods are not suitable for feature extraction. Instead, the virtual faces are fed into a system that makes use of Gabor filtering for recognition. Unlike other approaches that warp faces onto a mean shape, we show that if only pose parameters are modified, client specific information remains in the warped image and discrimination between subjects is more reliable. Statistical analysis of the authentication results obtained on the XM2VTS database confirm the hypothesis. Also, the CMU PIE database is used to assess the performance of the proposed methods in an identification scenario where large pose variations are present, achieving state-of-the-art results and outperforming both research and commercial techniques.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2007.903543</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMU PIE database ; Face recognition ; Facial ; facial symmetry ; Feature extraction ; Filtering ; Finite element method ; Gabor filters ; Gabor jets ; Head ; Image databases ; Mathematical models ; point distribution models ; pose-invariant face recognition ; Shape control ; Spline ; Statistical analysis ; Symmetry ; thin-plate splines ; Turning ; XM2VTS database</subject><ispartof>IEEE transactions on information forensics and security, 2007-09, Vol.2 (3), p.413-429</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-71664f7d39a9a1c645cd7d77c26417273184356bd4d7272c1fb6d349ae230ee63</citedby><cites>FETCH-LOGICAL-c323t-71664f7d39a9a1c645cd7d77c26417273184356bd4d7272c1fb6d349ae230ee63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4291544$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4291544$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gonzalez-Jimenez, D.</creatorcontrib><creatorcontrib>Alba-Castro, J.L.</creatorcontrib><title>Toward Pose-Invariant 2-D Face Recognition Through Point Distribution Models and Facial Symmetry</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>This paper proposes novel ways to deal with pose variations in a 2-D face recognition scenario. Using a training set of sparse face meshes, we built a point distribution model and identified the parameters which are responsible for controlling the apparent changes in shape due to turning and nodding the head, namely the pose parameters. Based on them, we propose two approaches for pose correction: 1) a method in which the pose parameters from both meshes are set to typical values of frontal faces, and 2) a method in which one mesh adopts the pose parameters of the other one. Finally, we obtain pose corrected meshes and, taking advantage of facial symmetry, virtual views are synthesized via Thin Plate Splines-based warping. Given that the corrected images are not embedded into a constant reference frame, holistic methods are not suitable for feature extraction. Instead, the virtual faces are fed into a system that makes use of Gabor filtering for recognition. Unlike other approaches that warp faces onto a mean shape, we show that if only pose parameters are modified, client specific information remains in the warped image and discrimination between subjects is more reliable. Statistical analysis of the authentication results obtained on the XM2VTS database confirm the hypothesis. Also, the CMU PIE database is used to assess the performance of the proposed methods in an identification scenario where large pose variations are present, achieving state-of-the-art results and outperforming both research and commercial techniques.</description><subject>CMU PIE database</subject><subject>Face recognition</subject><subject>Facial</subject><subject>facial symmetry</subject><subject>Feature extraction</subject><subject>Filtering</subject><subject>Finite element method</subject><subject>Gabor filters</subject><subject>Gabor jets</subject><subject>Head</subject><subject>Image databases</subject><subject>Mathematical models</subject><subject>point distribution models</subject><subject>pose-invariant face recognition</subject><subject>Shape control</subject><subject>Spline</subject><subject>Statistical analysis</subject><subject>Symmetry</subject><subject>thin-plate splines</subject><subject>Turning</subject><subject>XM2VTS database</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhiMEEqWwI7FETCwpPn8mI2opVAKBaJmNa7utqzQudgLqvyehqAPT3eme93R6kuQS0AAAFbezyXg6wAiJQYEIo-Qo6QFjPOMIw_GhB3KanMW4RohS4Hkv-Zj5bxVM-uqjzSbVlwpOVXWKs1E6Vtqmb1b7ZeVq56t0tgq-Wa5a1rXIyMU6uHnzu3r2xpYxVZXpYk6V6XS32dg67M6Tk4Uqo734q_3kfXw_Gz5mTy8Pk-HdU6YJJnUmgHO6EIYUqlCgOWXaCCOExpyCwIJATgnjc0NNO2ENizk3hBbKYoKs5aSf3OzvboP_bGys5cZFbctSVdY3UQIXQIDhgrXo9T907ZtQtd_JnJOc5TTPWwjtIR18jMEu5Da4jQo7CUh2xmVnXHbG5d54G7naR5y19oBTXACjlPwAqW97FQ</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Gonzalez-Jimenez, D.</creator><creator>Alba-Castro, J.L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20070901</creationdate><title>Toward Pose-Invariant 2-D Face Recognition Through Point Distribution Models and Facial Symmetry</title><author>Gonzalez-Jimenez, D. ; Alba-Castro, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-71664f7d39a9a1c645cd7d77c26417273184356bd4d7272c1fb6d349ae230ee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>CMU PIE database</topic><topic>Face recognition</topic><topic>Facial</topic><topic>facial symmetry</topic><topic>Feature extraction</topic><topic>Filtering</topic><topic>Finite element method</topic><topic>Gabor filters</topic><topic>Gabor jets</topic><topic>Head</topic><topic>Image databases</topic><topic>Mathematical models</topic><topic>point distribution models</topic><topic>pose-invariant face recognition</topic><topic>Shape control</topic><topic>Spline</topic><topic>Statistical analysis</topic><topic>Symmetry</topic><topic>thin-plate splines</topic><topic>Turning</topic><topic>XM2VTS database</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez-Jimenez, D.</creatorcontrib><creatorcontrib>Alba-Castro, J.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gonzalez-Jimenez, D.</au><au>Alba-Castro, J.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Pose-Invariant 2-D Face Recognition Through Point Distribution Models and Facial Symmetry</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2007-09-01</date><risdate>2007</risdate><volume>2</volume><issue>3</issue><spage>413</spage><epage>429</epage><pages>413-429</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>This paper proposes novel ways to deal with pose variations in a 2-D face recognition scenario. Using a training set of sparse face meshes, we built a point distribution model and identified the parameters which are responsible for controlling the apparent changes in shape due to turning and nodding the head, namely the pose parameters. Based on them, we propose two approaches for pose correction: 1) a method in which the pose parameters from both meshes are set to typical values of frontal faces, and 2) a method in which one mesh adopts the pose parameters of the other one. Finally, we obtain pose corrected meshes and, taking advantage of facial symmetry, virtual views are synthesized via Thin Plate Splines-based warping. Given that the corrected images are not embedded into a constant reference frame, holistic methods are not suitable for feature extraction. Instead, the virtual faces are fed into a system that makes use of Gabor filtering for recognition. Unlike other approaches that warp faces onto a mean shape, we show that if only pose parameters are modified, client specific information remains in the warped image and discrimination between subjects is more reliable. Statistical analysis of the authentication results obtained on the XM2VTS database confirm the hypothesis. Also, the CMU PIE database is used to assess the performance of the proposed methods in an identification scenario where large pose variations are present, achieving state-of-the-art results and outperforming both research and commercial techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2007.903543</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2007-09, Vol.2 (3), p.413-429
issn 1556-6013
1556-6021
language eng
recordid cdi_crossref_primary_10_1109_TIFS_2007_903543
source IEEE Electronic Library (IEL)
subjects CMU PIE database
Face recognition
Facial
facial symmetry
Feature extraction
Filtering
Finite element method
Gabor filters
Gabor jets
Head
Image databases
Mathematical models
point distribution models
pose-invariant face recognition
Shape control
Spline
Statistical analysis
Symmetry
thin-plate splines
Turning
XM2VTS database
title Toward Pose-Invariant 2-D Face Recognition Through Point Distribution Models and Facial Symmetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T23%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Pose-Invariant%202-D%20Face%20Recognition%20Through%20Point%20Distribution%20Models%20and%20Facial%20Symmetry&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Gonzalez-Jimenez,%20D.&rft.date=2007-09-01&rft.volume=2&rft.issue=3&rft.spage=413&rft.epage=429&rft.pages=413-429&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2007.903543&rft_dat=%3Cproquest_RIE%3E2332331741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863858488&rft_id=info:pmid/&rft_ieee_id=4291544&rfr_iscdi=true