RAPA-Planner: Robust and Efficient Motion Planning for Quadrotors Based on Parallel RA-MPPI
Motion planning for quadrotors in cluttered environments is an open problem, due to the limited onboard computational power and lack of risk assessment. To this end, an urgent need exists for an efficient and robust strategy that can generate safe motions. In this article, we develop a risk-aware pa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2024-12, p.1-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | |
creator | Zhang, Xuewei Lu, Junjie Hui, Yulin Shen, Homgming Xu, Liwen Tian, Bailing |
description | Motion planning for quadrotors in cluttered environments is an open problem, due to the limited onboard computational power and lack of risk assessment. To this end, an urgent need exists for an efficient and robust strategy that can generate safe motions. In this article, we develop a risk-aware parallel planner that is capable of quickly finding a safe trajectory with high smoothness and aggressiveness. Specifically, kinodynamic feasible motions are sampled in state space and connected to generate the guiding trajectory, which keeps topological consistency with execution trajectories simultaneously and can be solved quickly in closed-form. Then, a gradient-free and robust optimization scheme is presented to refine the trajectory based on risk-aware model predictive path integral (RA-MPPI). It incorporates the conditional value-at-risk (CVaR) as a metric to measure the risk level, which can estimate potential risks (such as collision and exceeding dynamic limits) automatically according to specified CVaR. Furthermore, the RA-MPPI can be solved using Monte-Carlo sampling, which avoids gradient calculation and can be deployed on GPUs in parallel, thereby improving efficiency. Benchmark results in simulation demonstrate that the proposed method outperforms others in terms of trajectory length and achieves a favorable performance with respect to efficiency and trajectory smoothness. Moreover, the effectiveness of the presented approach is further validated through real-world experiments. |
doi_str_mv | 10.1109/TIE.2024.3508056 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2024_3508056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10791298</ieee_id><sourcerecordid>10_1109_TIE_2024_3508056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-6b3e8ddf8f7b8fb6f67ac93a80f4ea9cfdc35d4d2630b2f928a248fb8a309a693</originalsourceid><addsrcrecordid>eNpNkL1OwzAYRS0EEqWwMzD4BVw-_8ZmC1WBSq0IVZkYIie2UVCIkR0G3p6WdmC6yzl3OAhdU5hRCuZ2u1zMGDAx4xI0SHWCJlTKghgj9CmaACs0ARDqHF3k_AFAhaRygt42ZVWSqrfD4NMd3sTmO4_YDg4vQujazg8jXsexiwP-g7rhHYeY8Mu3dSmOMWV8b7N3eA_YZPve93hTknVVLS_RWbB99lfHnaLXh8V2_kRWz4_LebkiLRXFSFTDvXYu6FA0OjQqqMK2hlsNQXhr2uBaLp1wTHFoWDBMWyZ2oLYcjFWGTxEcftsUc04-1F-p-7Tpp6ZQ7-PUuzj1Pk59jLNTbg5K573_hxeGMqP5L3q7YI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RAPA-Planner: Robust and Efficient Motion Planning for Quadrotors Based on Parallel RA-MPPI</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xuewei ; Lu, Junjie ; Hui, Yulin ; Shen, Homgming ; Xu, Liwen ; Tian, Bailing</creator><creatorcontrib>Zhang, Xuewei ; Lu, Junjie ; Hui, Yulin ; Shen, Homgming ; Xu, Liwen ; Tian, Bailing</creatorcontrib><description>Motion planning for quadrotors in cluttered environments is an open problem, due to the limited onboard computational power and lack of risk assessment. To this end, an urgent need exists for an efficient and robust strategy that can generate safe motions. In this article, we develop a risk-aware parallel planner that is capable of quickly finding a safe trajectory with high smoothness and aggressiveness. Specifically, kinodynamic feasible motions are sampled in state space and connected to generate the guiding trajectory, which keeps topological consistency with execution trajectories simultaneously and can be solved quickly in closed-form. Then, a gradient-free and robust optimization scheme is presented to refine the trajectory based on risk-aware model predictive path integral (RA-MPPI). It incorporates the conditional value-at-risk (CVaR) as a metric to measure the risk level, which can estimate potential risks (such as collision and exceeding dynamic limits) automatically according to specified CVaR. Furthermore, the RA-MPPI can be solved using Monte-Carlo sampling, which avoids gradient calculation and can be deployed on GPUs in parallel, thereby improving efficiency. Benchmark results in simulation demonstrate that the proposed method outperforms others in terms of trajectory length and achieves a favorable performance with respect to efficiency and trajectory smoothness. Moreover, the effectiveness of the presented approach is further validated through real-world experiments.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2024.3508056</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Costs ; Gradient-free ; Kinematics ; motion planning ; Optimization methods ; parallel acceleration ; Planning ; Polynomials ; Quadrotors ; risk-aware MPPI ; Robustness ; Topology ; Trajectory ; Trajectory optimization</subject><ispartof>IEEE transactions on industrial electronics (1982), 2024-12, p.1-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1004-8350 ; 0000-0002-0993-9765 ; 0009-0002-3124-2566 ; 0000-0003-0141-1904 ; 0009-0005-8438-6637 ; 0000-0003-4512-1335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10791298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10791298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xuewei</creatorcontrib><creatorcontrib>Lu, Junjie</creatorcontrib><creatorcontrib>Hui, Yulin</creatorcontrib><creatorcontrib>Shen, Homgming</creatorcontrib><creatorcontrib>Xu, Liwen</creatorcontrib><creatorcontrib>Tian, Bailing</creatorcontrib><title>RAPA-Planner: Robust and Efficient Motion Planning for Quadrotors Based on Parallel RA-MPPI</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Motion planning for quadrotors in cluttered environments is an open problem, due to the limited onboard computational power and lack of risk assessment. To this end, an urgent need exists for an efficient and robust strategy that can generate safe motions. In this article, we develop a risk-aware parallel planner that is capable of quickly finding a safe trajectory with high smoothness and aggressiveness. Specifically, kinodynamic feasible motions are sampled in state space and connected to generate the guiding trajectory, which keeps topological consistency with execution trajectories simultaneously and can be solved quickly in closed-form. Then, a gradient-free and robust optimization scheme is presented to refine the trajectory based on risk-aware model predictive path integral (RA-MPPI). It incorporates the conditional value-at-risk (CVaR) as a metric to measure the risk level, which can estimate potential risks (such as collision and exceeding dynamic limits) automatically according to specified CVaR. Furthermore, the RA-MPPI can be solved using Monte-Carlo sampling, which avoids gradient calculation and can be deployed on GPUs in parallel, thereby improving efficiency. Benchmark results in simulation demonstrate that the proposed method outperforms others in terms of trajectory length and achieves a favorable performance with respect to efficiency and trajectory smoothness. Moreover, the effectiveness of the presented approach is further validated through real-world experiments.</description><subject>Costs</subject><subject>Gradient-free</subject><subject>Kinematics</subject><subject>motion planning</subject><subject>Optimization methods</subject><subject>parallel acceleration</subject><subject>Planning</subject><subject>Polynomials</subject><subject>Quadrotors</subject><subject>risk-aware MPPI</subject><subject>Robustness</subject><subject>Topology</subject><subject>Trajectory</subject><subject>Trajectory optimization</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAYRS0EEqWwMzD4BVw-_8ZmC1WBSq0IVZkYIie2UVCIkR0G3p6WdmC6yzl3OAhdU5hRCuZ2u1zMGDAx4xI0SHWCJlTKghgj9CmaACs0ARDqHF3k_AFAhaRygt42ZVWSqrfD4NMd3sTmO4_YDg4vQujazg8jXsexiwP-g7rhHYeY8Mu3dSmOMWV8b7N3eA_YZPve93hTknVVLS_RWbB99lfHnaLXh8V2_kRWz4_LebkiLRXFSFTDvXYu6FA0OjQqqMK2hlsNQXhr2uBaLp1wTHFoWDBMWyZ2oLYcjFWGTxEcftsUc04-1F-p-7Tpp6ZQ7-PUuzj1Pk59jLNTbg5K573_hxeGMqP5L3q7YI0</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Zhang, Xuewei</creator><creator>Lu, Junjie</creator><creator>Hui, Yulin</creator><creator>Shen, Homgming</creator><creator>Xu, Liwen</creator><creator>Tian, Bailing</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1004-8350</orcidid><orcidid>https://orcid.org/0000-0002-0993-9765</orcidid><orcidid>https://orcid.org/0009-0002-3124-2566</orcidid><orcidid>https://orcid.org/0000-0003-0141-1904</orcidid><orcidid>https://orcid.org/0009-0005-8438-6637</orcidid><orcidid>https://orcid.org/0000-0003-4512-1335</orcidid></search><sort><creationdate>20241210</creationdate><title>RAPA-Planner: Robust and Efficient Motion Planning for Quadrotors Based on Parallel RA-MPPI</title><author>Zhang, Xuewei ; Lu, Junjie ; Hui, Yulin ; Shen, Homgming ; Xu, Liwen ; Tian, Bailing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-6b3e8ddf8f7b8fb6f67ac93a80f4ea9cfdc35d4d2630b2f928a248fb8a309a693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Costs</topic><topic>Gradient-free</topic><topic>Kinematics</topic><topic>motion planning</topic><topic>Optimization methods</topic><topic>parallel acceleration</topic><topic>Planning</topic><topic>Polynomials</topic><topic>Quadrotors</topic><topic>risk-aware MPPI</topic><topic>Robustness</topic><topic>Topology</topic><topic>Trajectory</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuewei</creatorcontrib><creatorcontrib>Lu, Junjie</creatorcontrib><creatorcontrib>Hui, Yulin</creatorcontrib><creatorcontrib>Shen, Homgming</creatorcontrib><creatorcontrib>Xu, Liwen</creatorcontrib><creatorcontrib>Tian, Bailing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xuewei</au><au>Lu, Junjie</au><au>Hui, Yulin</au><au>Shen, Homgming</au><au>Xu, Liwen</au><au>Tian, Bailing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RAPA-Planner: Robust and Efficient Motion Planning for Quadrotors Based on Parallel RA-MPPI</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2024-12-10</date><risdate>2024</risdate><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Motion planning for quadrotors in cluttered environments is an open problem, due to the limited onboard computational power and lack of risk assessment. To this end, an urgent need exists for an efficient and robust strategy that can generate safe motions. In this article, we develop a risk-aware parallel planner that is capable of quickly finding a safe trajectory with high smoothness and aggressiveness. Specifically, kinodynamic feasible motions are sampled in state space and connected to generate the guiding trajectory, which keeps topological consistency with execution trajectories simultaneously and can be solved quickly in closed-form. Then, a gradient-free and robust optimization scheme is presented to refine the trajectory based on risk-aware model predictive path integral (RA-MPPI). It incorporates the conditional value-at-risk (CVaR) as a metric to measure the risk level, which can estimate potential risks (such as collision and exceeding dynamic limits) automatically according to specified CVaR. Furthermore, the RA-MPPI can be solved using Monte-Carlo sampling, which avoids gradient calculation and can be deployed on GPUs in parallel, thereby improving efficiency. Benchmark results in simulation demonstrate that the proposed method outperforms others in terms of trajectory length and achieves a favorable performance with respect to efficiency and trajectory smoothness. Moreover, the effectiveness of the presented approach is further validated through real-world experiments.</abstract><pub>IEEE</pub><doi>10.1109/TIE.2024.3508056</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1004-8350</orcidid><orcidid>https://orcid.org/0000-0002-0993-9765</orcidid><orcidid>https://orcid.org/0009-0002-3124-2566</orcidid><orcidid>https://orcid.org/0000-0003-0141-1904</orcidid><orcidid>https://orcid.org/0009-0005-8438-6637</orcidid><orcidid>https://orcid.org/0000-0003-4512-1335</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2024-12, p.1-11 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2024_3508056 |
source | IEEE Electronic Library (IEL) |
subjects | Costs Gradient-free Kinematics motion planning Optimization methods parallel acceleration Planning Polynomials Quadrotors risk-aware MPPI Robustness Topology Trajectory Trajectory optimization |
title | RAPA-Planner: Robust and Efficient Motion Planning for Quadrotors Based on Parallel RA-MPPI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RAPA-Planner:%20Robust%20and%20Efficient%20Motion%20Planning%20for%20Quadrotors%20Based%20on%20Parallel%20RA-MPPI&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Zhang,%20Xuewei&rft.date=2024-12-10&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2024.3508056&rft_dat=%3Ccrossref_RIE%3E10_1109_TIE_2024_3508056%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10791298&rfr_iscdi=true |