RAPA-Planner: Robust and Efficient Motion Planning for Quadrotors Based on Parallel RA-MPPI

Motion planning for quadrotors in cluttered environments is an open problem, due to the limited onboard computational power and lack of risk assessment. To this end, an urgent need exists for an efficient and robust strategy that can generate safe motions. In this article, we develop a risk-aware pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2024-12, p.1-11
Hauptverfasser: Zhang, Xuewei, Lu, Junjie, Hui, Yulin, Shen, Homgming, Xu, Liwen, Tian, Bailing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on industrial electronics (1982)
container_volume
creator Zhang, Xuewei
Lu, Junjie
Hui, Yulin
Shen, Homgming
Xu, Liwen
Tian, Bailing
description Motion planning for quadrotors in cluttered environments is an open problem, due to the limited onboard computational power and lack of risk assessment. To this end, an urgent need exists for an efficient and robust strategy that can generate safe motions. In this article, we develop a risk-aware parallel planner that is capable of quickly finding a safe trajectory with high smoothness and aggressiveness. Specifically, kinodynamic feasible motions are sampled in state space and connected to generate the guiding trajectory, which keeps topological consistency with execution trajectories simultaneously and can be solved quickly in closed-form. Then, a gradient-free and robust optimization scheme is presented to refine the trajectory based on risk-aware model predictive path integral (RA-MPPI). It incorporates the conditional value-at-risk (CVaR) as a metric to measure the risk level, which can estimate potential risks (such as collision and exceeding dynamic limits) automatically according to specified CVaR. Furthermore, the RA-MPPI can be solved using Monte-Carlo sampling, which avoids gradient calculation and can be deployed on GPUs in parallel, thereby improving efficiency. Benchmark results in simulation demonstrate that the proposed method outperforms others in terms of trajectory length and achieves a favorable performance with respect to efficiency and trajectory smoothness. Moreover, the effectiveness of the presented approach is further validated through real-world experiments.
doi_str_mv 10.1109/TIE.2024.3508056
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2024_3508056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10791298</ieee_id><sourcerecordid>10_1109_TIE_2024_3508056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-6b3e8ddf8f7b8fb6f67ac93a80f4ea9cfdc35d4d2630b2f928a248fb8a309a693</originalsourceid><addsrcrecordid>eNpNkL1OwzAYRS0EEqWwMzD4BVw-_8ZmC1WBSq0IVZkYIie2UVCIkR0G3p6WdmC6yzl3OAhdU5hRCuZ2u1zMGDAx4xI0SHWCJlTKghgj9CmaACs0ARDqHF3k_AFAhaRygt42ZVWSqrfD4NMd3sTmO4_YDg4vQujazg8jXsexiwP-g7rhHYeY8Mu3dSmOMWV8b7N3eA_YZPve93hTknVVLS_RWbB99lfHnaLXh8V2_kRWz4_LebkiLRXFSFTDvXYu6FA0OjQqqMK2hlsNQXhr2uBaLp1wTHFoWDBMWyZ2oLYcjFWGTxEcftsUc04-1F-p-7Tpp6ZQ7-PUuzj1Pk59jLNTbg5K573_hxeGMqP5L3q7YI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RAPA-Planner: Robust and Efficient Motion Planning for Quadrotors Based on Parallel RA-MPPI</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xuewei ; Lu, Junjie ; Hui, Yulin ; Shen, Homgming ; Xu, Liwen ; Tian, Bailing</creator><creatorcontrib>Zhang, Xuewei ; Lu, Junjie ; Hui, Yulin ; Shen, Homgming ; Xu, Liwen ; Tian, Bailing</creatorcontrib><description>Motion planning for quadrotors in cluttered environments is an open problem, due to the limited onboard computational power and lack of risk assessment. To this end, an urgent need exists for an efficient and robust strategy that can generate safe motions. In this article, we develop a risk-aware parallel planner that is capable of quickly finding a safe trajectory with high smoothness and aggressiveness. Specifically, kinodynamic feasible motions are sampled in state space and connected to generate the guiding trajectory, which keeps topological consistency with execution trajectories simultaneously and can be solved quickly in closed-form. Then, a gradient-free and robust optimization scheme is presented to refine the trajectory based on risk-aware model predictive path integral (RA-MPPI). It incorporates the conditional value-at-risk (CVaR) as a metric to measure the risk level, which can estimate potential risks (such as collision and exceeding dynamic limits) automatically according to specified CVaR. Furthermore, the RA-MPPI can be solved using Monte-Carlo sampling, which avoids gradient calculation and can be deployed on GPUs in parallel, thereby improving efficiency. Benchmark results in simulation demonstrate that the proposed method outperforms others in terms of trajectory length and achieves a favorable performance with respect to efficiency and trajectory smoothness. Moreover, the effectiveness of the presented approach is further validated through real-world experiments.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2024.3508056</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Costs ; Gradient-free ; Kinematics ; motion planning ; Optimization methods ; parallel acceleration ; Planning ; Polynomials ; Quadrotors ; risk-aware MPPI ; Robustness ; Topology ; Trajectory ; Trajectory optimization</subject><ispartof>IEEE transactions on industrial electronics (1982), 2024-12, p.1-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1004-8350 ; 0000-0002-0993-9765 ; 0009-0002-3124-2566 ; 0000-0003-0141-1904 ; 0009-0005-8438-6637 ; 0000-0003-4512-1335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10791298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10791298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xuewei</creatorcontrib><creatorcontrib>Lu, Junjie</creatorcontrib><creatorcontrib>Hui, Yulin</creatorcontrib><creatorcontrib>Shen, Homgming</creatorcontrib><creatorcontrib>Xu, Liwen</creatorcontrib><creatorcontrib>Tian, Bailing</creatorcontrib><title>RAPA-Planner: Robust and Efficient Motion Planning for Quadrotors Based on Parallel RA-MPPI</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Motion planning for quadrotors in cluttered environments is an open problem, due to the limited onboard computational power and lack of risk assessment. To this end, an urgent need exists for an efficient and robust strategy that can generate safe motions. In this article, we develop a risk-aware parallel planner that is capable of quickly finding a safe trajectory with high smoothness and aggressiveness. Specifically, kinodynamic feasible motions are sampled in state space and connected to generate the guiding trajectory, which keeps topological consistency with execution trajectories simultaneously and can be solved quickly in closed-form. Then, a gradient-free and robust optimization scheme is presented to refine the trajectory based on risk-aware model predictive path integral (RA-MPPI). It incorporates the conditional value-at-risk (CVaR) as a metric to measure the risk level, which can estimate potential risks (such as collision and exceeding dynamic limits) automatically according to specified CVaR. Furthermore, the RA-MPPI can be solved using Monte-Carlo sampling, which avoids gradient calculation and can be deployed on GPUs in parallel, thereby improving efficiency. Benchmark results in simulation demonstrate that the proposed method outperforms others in terms of trajectory length and achieves a favorable performance with respect to efficiency and trajectory smoothness. Moreover, the effectiveness of the presented approach is further validated through real-world experiments.</description><subject>Costs</subject><subject>Gradient-free</subject><subject>Kinematics</subject><subject>motion planning</subject><subject>Optimization methods</subject><subject>parallel acceleration</subject><subject>Planning</subject><subject>Polynomials</subject><subject>Quadrotors</subject><subject>risk-aware MPPI</subject><subject>Robustness</subject><subject>Topology</subject><subject>Trajectory</subject><subject>Trajectory optimization</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAYRS0EEqWwMzD4BVw-_8ZmC1WBSq0IVZkYIie2UVCIkR0G3p6WdmC6yzl3OAhdU5hRCuZ2u1zMGDAx4xI0SHWCJlTKghgj9CmaACs0ARDqHF3k_AFAhaRygt42ZVWSqrfD4NMd3sTmO4_YDg4vQujazg8jXsexiwP-g7rhHYeY8Mu3dSmOMWV8b7N3eA_YZPve93hTknVVLS_RWbB99lfHnaLXh8V2_kRWz4_LebkiLRXFSFTDvXYu6FA0OjQqqMK2hlsNQXhr2uBaLp1wTHFoWDBMWyZ2oLYcjFWGTxEcftsUc04-1F-p-7Tpp6ZQ7-PUuzj1Pk59jLNTbg5K573_hxeGMqP5L3q7YI0</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Zhang, Xuewei</creator><creator>Lu, Junjie</creator><creator>Hui, Yulin</creator><creator>Shen, Homgming</creator><creator>Xu, Liwen</creator><creator>Tian, Bailing</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1004-8350</orcidid><orcidid>https://orcid.org/0000-0002-0993-9765</orcidid><orcidid>https://orcid.org/0009-0002-3124-2566</orcidid><orcidid>https://orcid.org/0000-0003-0141-1904</orcidid><orcidid>https://orcid.org/0009-0005-8438-6637</orcidid><orcidid>https://orcid.org/0000-0003-4512-1335</orcidid></search><sort><creationdate>20241210</creationdate><title>RAPA-Planner: Robust and Efficient Motion Planning for Quadrotors Based on Parallel RA-MPPI</title><author>Zhang, Xuewei ; Lu, Junjie ; Hui, Yulin ; Shen, Homgming ; Xu, Liwen ; Tian, Bailing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-6b3e8ddf8f7b8fb6f67ac93a80f4ea9cfdc35d4d2630b2f928a248fb8a309a693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Costs</topic><topic>Gradient-free</topic><topic>Kinematics</topic><topic>motion planning</topic><topic>Optimization methods</topic><topic>parallel acceleration</topic><topic>Planning</topic><topic>Polynomials</topic><topic>Quadrotors</topic><topic>risk-aware MPPI</topic><topic>Robustness</topic><topic>Topology</topic><topic>Trajectory</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuewei</creatorcontrib><creatorcontrib>Lu, Junjie</creatorcontrib><creatorcontrib>Hui, Yulin</creatorcontrib><creatorcontrib>Shen, Homgming</creatorcontrib><creatorcontrib>Xu, Liwen</creatorcontrib><creatorcontrib>Tian, Bailing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xuewei</au><au>Lu, Junjie</au><au>Hui, Yulin</au><au>Shen, Homgming</au><au>Xu, Liwen</au><au>Tian, Bailing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RAPA-Planner: Robust and Efficient Motion Planning for Quadrotors Based on Parallel RA-MPPI</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2024-12-10</date><risdate>2024</risdate><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Motion planning for quadrotors in cluttered environments is an open problem, due to the limited onboard computational power and lack of risk assessment. To this end, an urgent need exists for an efficient and robust strategy that can generate safe motions. In this article, we develop a risk-aware parallel planner that is capable of quickly finding a safe trajectory with high smoothness and aggressiveness. Specifically, kinodynamic feasible motions are sampled in state space and connected to generate the guiding trajectory, which keeps topological consistency with execution trajectories simultaneously and can be solved quickly in closed-form. Then, a gradient-free and robust optimization scheme is presented to refine the trajectory based on risk-aware model predictive path integral (RA-MPPI). It incorporates the conditional value-at-risk (CVaR) as a metric to measure the risk level, which can estimate potential risks (such as collision and exceeding dynamic limits) automatically according to specified CVaR. Furthermore, the RA-MPPI can be solved using Monte-Carlo sampling, which avoids gradient calculation and can be deployed on GPUs in parallel, thereby improving efficiency. Benchmark results in simulation demonstrate that the proposed method outperforms others in terms of trajectory length and achieves a favorable performance with respect to efficiency and trajectory smoothness. Moreover, the effectiveness of the presented approach is further validated through real-world experiments.</abstract><pub>IEEE</pub><doi>10.1109/TIE.2024.3508056</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1004-8350</orcidid><orcidid>https://orcid.org/0000-0002-0993-9765</orcidid><orcidid>https://orcid.org/0009-0002-3124-2566</orcidid><orcidid>https://orcid.org/0000-0003-0141-1904</orcidid><orcidid>https://orcid.org/0009-0005-8438-6637</orcidid><orcidid>https://orcid.org/0000-0003-4512-1335</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2024-12, p.1-11
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2024_3508056
source IEEE Electronic Library (IEL)
subjects Costs
Gradient-free
Kinematics
motion planning
Optimization methods
parallel acceleration
Planning
Polynomials
Quadrotors
risk-aware MPPI
Robustness
Topology
Trajectory
Trajectory optimization
title RAPA-Planner: Robust and Efficient Motion Planning for Quadrotors Based on Parallel RA-MPPI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RAPA-Planner:%20Robust%20and%20Efficient%20Motion%20Planning%20for%20Quadrotors%20Based%20on%20Parallel%20RA-MPPI&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Zhang,%20Xuewei&rft.date=2024-12-10&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2024.3508056&rft_dat=%3Ccrossref_RIE%3E10_1109_TIE_2024_3508056%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10791298&rfr_iscdi=true